Library Hours
Monday to Friday: 9 a.m. to 9 p.m.
Saturday: 9 a.m. to 5 p.m.
Sunday: 1 p.m. to 9 p.m.
Naper Blvd. 1 p.m. to 5 p.m.
     
Limit search to available items
Results Page:  Previous Next
Author Derryberry, DeWayne R., author.

Title Basic data analysis for time series with R / DeWayne R. Derryberry, Department of Mathematics and Statistics, Idaho State University, Voise, ID. [O'Reilly electronic resource]

Publication Info. Hoboken, New Jersey : John Wiley & Sons, Inc., [2014]
©2014
QR Code
Description 1 online resource
text file
Bibliography Includes bibliographical references and index.
Summary "This book emphasizes the collaborative analysis of data that is used to collect increments of time or space. Written at a readily accessible level, but with the necessary theory in mind, the author uses frequency- and time-domain and trigonometric regression as themes throughout the book. The content includes modern topics such as wavelets, Fourier series, and Akaike's Information Criterion (AIC), which is not typical of current-day "classics." Applications to a variety of scientific fields are showcased. Exercise sets are well crafted with the express intent of supporting pedagogy through recognition and repetition. R subroutines are employed as the software and graphics tool of choice. Brevity is a key component to the retention of the subject matter. The book presumes knowledge of linear algebra, probability, data analysis, and basic computer programming"-- Provided by publisher
"This book emphasizes the collaborative analysis of data that is used to collect increments of time or space. Written at a readily accessible level, but with the necessary theory in mind, the author uses frequency- and time-domain and trigonometric regression as themes throughout the book"-- Provided by publisher
Contents Machine generated contents note: 1. R Basics -- 1.1. Getting Started, -- 1.2. Special R Conventions, -- 1.3. Common Structures, -- 1.4. Common Functions, -- 1.5. Time Series Functions, -- 1.6. Importing Data, -- Exercises, -- 2. Review of Regression and More About R -- 2.1. Goals of this Chapter, -- 2.2. The Simple(ST) Regression Model, -- 2.2.1. Ordinary Least Squares, -- 2.2.2. Properties of OLS Estimates, -- 2.2.3. Matrix Representation of the Problem, -- 2.3. Simulating the Data from a Model and Estimating the Model Parameters in R, -- 2.3.1. Simulating Data, -- 2.3.2. Estimating the Model Parameters in R, -- 2.4. Basic Inference for the Model, -- 2.5. Residuals Analysis[2014]What Can Go Wrong, -- 2.6. Matrix Manipulation in R, -- 2.6.1. Introduction, -- 2.6.2. OLS the Hard Way, -- 2.6.3. Some Other Matrix Commands, -- Exercises, -- 3. The Modeling Approach Taken in this Book and Some Examples of Typical Serially Correlated Data -- 3.1. Signal and Noise, -- 3.2. Time Series Data, -- 3.3. Simple Regression in the Framework, -- 3.4. Real Data and Simulated Data, -- 3.5. The Diversity of Time Series Data, -- 3.6. Getting Data Into R, -- 3.6.1. Overview, -- 3.6.2. The Diskette and the scan() and ts() Functions[2014]New York City Temperatures, -- 3.6.3. The Diskette and the read.table() Function[2014]The Semmelweis Data, -- 3.6.4. Cut and Paste Data to a Text Editor, -- Exercises, -- 4. Some Comments on Assumptions -- 4.1. Introduction, -- 4.2. The Normality Assumption, -- 4.2.1. Right Skew, -- 4.2.2. Left Skew, -- 4.2.3. Heavy Tails, -- 4.3. Equal Variance, -- 4.3.1. Two-Sample t-Test, -- 4.3.2. Regression, -- 4.4. Independence, -- 4.5. Power of Logarithmic Transformations Illustrated, -- 4.6. Summary, -- Exercises, -- 5. The Autocorrelation Function And AR(1), AR(2) Models -- 5.1. Standard Models[2014]What are the Alternatives to White Noise?, -- 5.2. Autocovariance and Autocorrelation, -- 5.2.1. Stationarity, -- 5.2.2. A Note About Conditions, -- 5.2.3. Properties of Autocovariance, -- 5.2.4. White Noise, -- 5.2.5. Estimation of the Autocovariance and Autocorrelation, -- 5.3. The acf() Function in R, -- 5.3.1. Background, -- 5.3.2. The Basic Code for Estimating the Autocovariance, -- 5.4. The First Alternative to White Noise: Autoregressive Errors[2014]AR(1), AR(2), -- 5.4.1. Definition of the AR(1) and AR(2) Models, -- 5.4.2. Some Preliminary Facts, -- 5.4.3. The AR(1) Model Autocorrelation and Autocovariance, -- 5.4.4. Using Correlation and Scatterplots to Illustrate the AR(1) Model, -- 5.4.5. The AR(2) Model Autocorrelation and Autocovariance, -- 5.4.6. Simulating Data for AR(m) Models, -- 5.4.7. Examples of Stable and Unstable AR(1) Models, -- 5.4.8. Examples of Stable and Unstable AR(2) Models, -- Exercises, -- 6. The Moving Average Models MA(1) And MA(2) -- 6.1. The Moving Average Model, -- 6.2. The Autocorrelation for MA(1) Models, -- 6.3. A Duality Between MA(l) And AR(m) Models, -- 6.4. The Autocorrelation for MA(2) Models, -- 6.5. Simulated Examples of the MA(1) Model, -- 6.6. Simulated Examples of the MA(2) Model, -- 6.7. AR(m) and MA(l) model acf() Plots, -- Exercises, -- 7. Review of Transcendental Functions and Complex Numbers -- 7.1. Background, -- 7.2. Complex Arithmetic, -- 7.2.1. The Number i, -- 7.2.2. Complex Conjugates, -- 7.2.3. The Magnitude of a Complex Number, -- 7.3. Some Important Series, -- 7.3.1. The Geometric and Some Transcendental Series, -- 7.3.2. A Rationale for Euler's Formula, -- 7.4. Useful Facts About Periodic Transcendental Functions, -- Exercises, -- 8. The Power Spectrum and the Periodogram -- 8.1. Introduction, -- 8.2. A Definition and a Simplified Form for p(f), -- 8.3. Inverting p(f) to Recover the Ck Values, -- 8.4. The Power Spectrum for Some Familiar Models, -- 8.4.1. White Noise, -- 8.4.2. The Spectrum for AR(1) Models, -- 8.4.3. The Spectrum for AR(2) Models, -- 8.5. The Periodogram, a Closer Look, -- 8:5.1. Why is the Periodogram Useful?, -- 8.5.2. Some Naive Code for a Periodogram, -- 8.5.3. An Example[2014]The Sunspot Data, -- 8.6. The Function spec.pgram() in R, -- Exercises, -- 9. Smoothers, The Bias-Variance Tradeoff, and the Smoothed Periodogram -- 9.1. Why is Smoothing Required?, -- 9.2. Smoothing, Bias, and Variance, -- 9.3. Smoothers Used in R, -- 9.3.1. The R Function lowess(), -- 9.3.2. The R Function smooth.spline(), -- 9.3.3. Kernel Smoothers in spec.pgram(), -- 9.4. Smoothing the Periodogram for a Series With a Known and Unknown Period, -- 9.4.1. Period Known, -- 9.4.2. Period Unknown, -- 9.5. Summary, -- Exercises, -- 10. A Regression Model for Periodic Data -- 10.1. The Model,
10.2. An Example: The NYC Temperature Data, -- 10.2.1. Fitting a Periodic Function, -- 10.2.2. An Outlier, -- 10.2.3. Refitting the Model with the Outlier Corrected, -- 10.3. Complications 1: CO2 Data, -- 10.4. Complications 2: Sunspot Numbers, -- 10.5. Complications 3: Accidental Deaths, -- 10.6. Summary, -- Exercises, -- 11. Model Selection and Cross-Validation -- 11.1. Background, -- 11.2. Hypothesis Tests in Simple Regression, -- 11.3. A More General Setting for Likelihood Ratio Tests, -- 11.4. A Subtlety Different Situation, -- 11.5. Information Criteria, -- 11.6. Cross-validation (Data Splitting): NYC Temperatures, -- 11.6.1. Explained Variation, R2, -- 11.6.2. Data Splitting, -- 11.6.3. Leave-One-Out Cross-Validation, -- 11.6.4. AIC as Leave-One-Out Cross-Validation, -- 11.7. Summary, -- Exercises, -- 12. Fitting Fourier series -- 12.1. Introduction: More Complex Periodic Models, -- 12.2. More Complex Periodic Behavior: Accidental Deaths, -- 12.2.1. Fourier Series Structure, -- 12.2.2. R Code for Fitting Large Fourier Series, -- 12.2.3. Model Selection with AIC, -- 12.2.4. Model Selection with Likelihood Ratio Tests, -- 12.2.5. Data Splitting, -- 12.2.6. Accidental Deaths[2014]Some Comment on Periodic Data, -- 12.3. The Boise River Flow data, -- 12.3.1. The Data, -- 12.3.2. Model Selection with AIC, -- 12.3.3. Data Splitting, -- 12.3.4. The Residuals, -- 12.4. Where Do We Go from Here?, -- Exercises, -- 13. Adjusting for AR(1) Correlation in Complex Models -- 13.1. Introduction, -- 13.2. The Two-Sample t-Test[2014]UNCUT and Patch-Cut Forest, -- 13.2.1. The Sleuth Data and the Question of Interest, -- 13.2.2. A Simple Adjustment for t-Tests When the Residuals Are AR(1), -- 13.2.3. A Simulation Example, -- 13.2.4. Analysis of the Sleuth Data, -- 13.3. The Second Sleuth Case[2014]Global Warming, A Simple Regression, -- 13.3.1. The Data and the Question, -- 13.3.2. Filtering to Produce (Quasi- )Independent Observations, -- 13.3.3. Simulated Example[2014]Regression, -- 13.3.4. Analysis of the Regression Case, -- 13.3.5. The Filtering Approach for the Logging Case, -- 13.3.6. A Few Comments on Filtering, -- 13.4. The Semmelweis Intervention, -- 13.4.1. The Data, -- 13.4.2. Why Serial Correlation?, -- 13.4.3. How This Data Differs from the Patch/Uncut Case, -- 13.4.4. Filtered Analysis, -- 13.4.5. Transformations and Inference, -- 13.5. The NYC Temperatures (Adjusted), -- 13.5.1. The Data and Prediction Intervals, -- 13.5.2. The AR(1) Prediction Model, -- 13.5.3. A Simulation to Evaluate These Formulas, -- 13.5.4. Application to NYC Data, -- 13.6. The Boise River Flow Data: Model Selection With Filtering, -- 13.6.1. The Revised Model Selection Problem, -- 13.6.2. Comments on R2 and R2pred' -- 13.6.3. Model Selection After Filtering with a Matrix, -- 13.7. Implications of AR(1) Adjustments and the "Skip" Method, -- 13.7.1. Adjustments for AR(1) Autocorrelation, -- 13.7.2. Impact of Serial Correlation on p-Values, -- 13.7.3. The "skip" Method, -- 13.8. Summary, -- Exercises, -- 14. The Backshift Operator, the Impulse Response Function, and General ARMA Models -- 14.1. The General ARMA Model, -- 14.1.1. The Mathematical Formulation, -- 14.1.2. The arima.sim() Function in R Revisited, -- 14.1.3. Examples of ARMA(m, l) Models, -- 14.2. The Backshift (Shift, Lag) Operator, -- 14.2.1. Definition of B, -- 14.2.2. The Stationary Conditions for a General AR(m) Model, -- 14.2.3. ARMA(m, l) Models and the Backshift Operator, -- 14.2.4. More Examples of ARMA(m, l) Models, -- 14.3. The Impulse Response Operator[2014]Intuition, -- 14.4. Impulse Response Operator, g(B)[2014]Computation, -- 14.4.1. Definition of g(B), -- 14.4.2. Computing the Coefficients, -- 14.4.3. Plotting an Impulse Response Function, -- 14.5. Interpretation and Utility of the Impulse Response Function, -- Exercises, -- 15. The Yule[2014]Walker Equations and the Partial Autocorrelation Function -- 15.1. Background, -- 15.2. Autocovariance of an ARMA(m, /) Model, -- 15.2.1. A Preliminary Result, -- 15.2.2. The Autocovariance Function for ARMA(m, /) Models, -- 15.3. AR(m) and the Yule[2014]Walker Equations, -- 15.3.1. The Equations, -- 15.3.2. The R Function aryw() with an AR(3) Example, -- 15.3.3. Information Criteria-Based Model Selection Using aryw(), -- 15.4. The Partial Autocorrelation Plot, -- 15.4.1. A Sequence of Hypothesis Tests, -- 15.4.2. The pacf() Function[2014]Hypothesis Tests Presented in a Plot, -- 15.5. The Spectrum For Arma Processes, -- 15.6. Summary, -- Exercises, -- 16. Modeling Philosophy and Complete Examples -- 16.1. Modeling Overview, -- 16.1.1. The Algorithm,
Note continued: 16.1.2. The Underlying Assumption, -- 16.1.3. An Example Using an AR(m) Filter to Model MA(3), -- 16.1.4. Generalizing the "Skip" Method, -- 16.2. A Complex Periodic Model[2014]Monthly River Flows, Fumas 1931-1978, -- 16.2.1. The Data, -- 16.2.2. A Saturated Model, -- 16.2.3. Building an AR(m) Filtering Matrix, -- 16.2.4. Model Selection, -- 16.2.5. Predictions and Prediction Intervals for an AR(3) Model, -- 16.2.6. Data Splitting, -- 16.2.7. Model Selection Based on a Validation Set, -- 16.3. A Modeling Example[2014]Trend and Periodicity: CO2 Levels at Mauna Lau, -- 16.3.1. The Saturated Model and Filter, -- 16.3.2. Model Selection, -- 16.3.3. How Well Does the Model Fit the Data?, -- 16.4. Modeling Periodicity with a Possible Intervention[2014]Two Examples, -- 16.4.1. The General Structure, -- 16.4.2. Directory Assistance, -- 16.4.3. Ozone Levels in Los Angeles, -- 14.5. Interpretation and Utility of the Impulse Response Function, -- Exercises, -- 15. The Yule[2014]Walker Equations and the Partial Autocorrelation Function -- 15.1. Background, -- 15.2. Autocovariance of an ARMA(m, l) Model, -- 15.2.1. A Preliminary Result, -- 15.2.2. The Autocovariance Function for ARMA(m, /) Models, -- 15.3. AR(m) and the Yule[2014]Walker Equations, -- 15.3.1. The Equations, -- 15.3.2. The R Function ar.yw() with an AR(3) Example, -- 15.3.3. Information Criteria-Based Model Selection Using ar.yw(), -- 15.4. The Partial Autocorrelation Plot, -- 15.4.1. A Sequence of Hypothesis Tests, -- 15.4.2. The pacf() Function[2014]Hypothesis Tests Presented in a Plot, -- 15.5. The Spectrum For Arma Processes, -- 15.6. Summary, -- Exercises, -- 16. Modeling Philosophy and Complete Examples -- 16.1. Modeling Overview, -- 16.1.1. The Algorithm, -- 16.1.2. The Underlying Assumption, -- 16.1.3. An Example Using an AR(m) Filter to Model MA(3), -- 16.1.4. Generalizing the "Skip" Method, -- 16.2. A Complex Periodic Model[2014]Monthly River Flows, Fumas 1931-1978, -- 16.2.1. The Data, -- 16.2.2. A Saturated Model, -- 16.2.3. Building an AR(m) Filtering Matrix, -- 16.2.4. Model Selection, -- 16.2.5. Predictions and Prediction Intervals for an AR(3) Model, -- 16.2.6. Data Splitting, -- 16.2.7. Model Selection Based on a Validation Set, -- 16.3. A Modeling Example[2014]Trend and Periodicity: CO2 Levels at Mauna Lau, -- 16.3.1. The Saturated Model and Filter, -- 16.3.2. Model Selection, -- 16.3.3. How Well Does the Model Fit the Data?, -- 16.4. Modeling Periodicity with a Possible Intervention[2014]Two Examples, -- 16.4.1. The General Structure, -- 16.4.2. Directory Assistance, -- 16.4.3. Ozone Levels in Los Angeles, -- 16.5. Periodic Models: Monthly, Weekly, and Daily Averages, -- 16.6. Summary, -- Exercises, -- 17. Wolf's Sunspot Number Data -- 17.1. Background, -- 17.2. Unknown Period -> Nonlinear Model, -- 17.3. The Function nls() in R, -- 17.4. Determining the Period, -- 17.5. Instability in the Mean, Amplitude, and Period, -- 17.6. Data Splitting for Prediction, -- 17.6.1. The Approach, -- 17.6.2. Step 1-Fitting One Step Ahead, -- 17.6.3. The AR Correction, -- 17.6.4. Putting it All Together, -- 17.6.5. Model Selection, -- 17.6.6. Predictions Two Steps Ahead, -- 17.7. Summary, -- Exercises, -- 18. An Analysis of Some Prostate and Breast Cancer Data -- 18.1. Background, -- 18.2. The First Data Set, -- 18.3. The Second Data Set, -- 18.3.1. Background and Questions, -- 18.3.2. Outline of the Statistical Analysis, -- 18.3.3. Looking at the Data, -- 18.3.4. Examining the Residuals for AR(m) Structure, -- 18.3.5. Regression Analysis with Filtered Data, -- Exercises, -- 19. Christopher Tennant/Ben Crosby Watershed Data -- 19.1. Background and Question, -- 19.2. Looking at the Data and Fitting Fourier Series, -- 19.2.1. The Structure of the Data, -- 19.2.2. Fourier Series Fits to the Data, -- 19.2.3. Connecting Patterns in Data to Physical Processes, -- 19.3. Averaging Data, -- 19.4. Results, -- Exercises, -- 20. Vostok Ice Core Data -- 20.1. Source of the Data, -- 20.2. Background, -- 20.3. Alignment, -- 20.3.1. Need for Alignment, and Possible Issues Resulting from Alignment, -- 20.3.2. Is the Pattern in the Temperature Data Maintained?, -- 20.3.3. Are the Dates Closely Matched?, -- 20.3.4. Are the Times Equally Spaced?, -- 20.4. A Naïve Analysis, -- 20.4.1. A Saturated Model, -- 20.4.2. Model Selection, -- 20.4.3. The Association Between CO2 and Temperature Change, -- 20.5. A Related Simulation, -- 20.5.1. The Model and the Question of Interest, -- 20.5.2. Simulation Code in R, -- 20.5.3. A Model Using all of the Simulated Data, -- 20.5.4. A Model Using a Sample of 283 from the Simulated Data, -- 20.6. An AR(1) Model for Irregular Spacing, -- 20.6.1. Motivation, -- 20.6.2. Method, -- 20.6.3. Results, -- 20.6.4. Sensitivity Analysis, -- 20.6.5. A Final Analysis, Well Not Quite, -- 20.7. Summary, -- Exercises, -- A.1. Overview, -- A.2. Loading a Time Series in Datamarket, -- A.3. Respecting Datamarket Licensing Agreements, -- B.1. Introduction, -- B.2. PRESS, -- B.3. Connection to Akaike's Result, -- B.4. Normalization and R2, -- B.5. An example, -- B.6. Conclusion and Further Comments, -- C.1. Introduction, -- C.2. Newton's Method for One-Dimensional Nonlinear Optimization, -- C.3. A Sequence of Directions, Step Sizes, and a Stopping Rule, -- C.4. What Could Go Wrong?, -- C.5. Generalizing the Optimization Problem, -- C.6. What Could Go Wrong[2014]Revisited, -- C.7. What Can be Done?
Subject Time-series analysis -- Data processing.
R (Computer program language)
Série chronologique -- Informatique.
R (Langage de programmation)
R (Computer program language)
Time-series analysis -- Data processing
Anàlisi de sèries temporals.
Processament de dades.
R (Llenguatge de programació)
Genre Llibres electrònics.
Other Form: Print version: Derryberry, DeWayne R. Basic data analysis for time series with R. Hoboken, New Jersey : John Wiley & Sons, Inc., [2014] 9781118422540 (DLC) 2014007300
ISBN 9781118593370 (pdf)
1118593375 (pdf)
9781118593363 (epub)
1118593367 (epub)
9781118593233
1118593235
1118422546 (hardback)
9781118422540 (hardback)
9781322007595 (MyiLibrary)
1322007594 (MyiLibrary)
(hardback)
Standard No. 9781118593363
Patron reviews: add a review
Click for more information
EBOOK
No one has rated this material

You can...
Also...
- Find similar reads
- Add a review
- Sign-up for Newsletter
- Suggest a purchase
- Can't find what you want?
More Information