Library Hours
Monday to Friday: 9 a.m. to 9 p.m.
Saturday: 9 a.m. to 5 p.m.
Sunday: 1 p.m. to 9 p.m.
Naper Blvd. 1 p.m. to 5 p.m.

LEADER 00000cam a2200697Ia 4500 
001    841170772 
003    OCoLC 
005    20240129213017.0 
006    m     o  d         
007    cr unu|||||||| 
008    130429s2013    enka    ob    001 0 eng d 
019    827208379 
020    9781118481790 
020    1118481798 
020    0470667095 
020    9780470667095 
029 1  AU@|b000051432797 
029 1  AU@|b000051452279 
029 1  DEBBG|bBV041121590 
029 1  DEBSZ|b396765084 
029 1  DEBSZ|b431329060 
035    (OCoLC)841170772|z(OCoLC)827208379 
037    CL0500000212|bSafari Books Online 
040    UMI|beng|epn|cUMI|dCOO|dDEBSZ|dEBLCP|dHEBIS|dOCLCQ|dOCLCF
       |dOCLCQ|dCEF|dUAB|dAU@|dCNCEN|dOCLCQ|dHS0|dOCLCO|dOCLCQ
       |dOCLCO 
049    INap 
082 04 621.042 
082 04 621.042 
099    eBook O’Reilly for Public Libraries 
100 1  Zhong, Qing-Chang. 
245 10 Control of power inverters in renewable energy and smart 
       grid integration /|cQing-Chang Zhong, Tomas Hornik.
       |h[O'Reilly electronic resource] 
260    Chichester, West Sussex, U.K. :|bJ. Wiley & Sons/IEEE 
       Press,|c2013. 
300    1 online resource (1 volume) :|billustrations 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
504    Includes bibliographical references and index. 
505 0  Dedication xv -- Preface xvii -- Foreword xix -- 
       Acknowledgements xxi -- About the Authors xxiii -- List of
       Abbreviations xxvi -- List of Figures xxxviii -- List of 
       Tables xl -- 1 Introduction 1 /1.1 Outline of the Book 1 /
       1.2 Basics of Power Processing 4 /1.3 Hardware Issues 24 /
       1.4 Wind Power Systems 43 /1.5 Solar Power Systems 52 /1.6
       Smart Grid Integration 54 -- 2 Preliminaries 65 /2.1 Power
       Quality Issues 65 /2.2 Repetitive Control 69 /2.3 
       Reference Frames 72 -- Part One Power Quality Control 81 -
       - 3 Current H∞ Repetitive Control 83 /3.1 System 
       Description 83 /3.2 Controller Design 84 /3.3 Design 
       Example 88 /3.4 Experimental Results 90 /3.5 Summary 92 --
       4 Voltage and Current H∞ Repetitive Control 95 /4.1 
       System Description 95 /4.2 Modelling of an Inverter 96 /
       4.3 Controller Design 97 /4.4 Design Example 102 /4.5 
       Simulation Results 104 /4.6 Summary 108 -- 5 Voltage H∞ 
       Repetitive Control with a Frequency-adaptiveMechanism 109 
       /5.1 System Description 109 /5.2 Controller Design 110 /
       5.3 Design Example 116 /5.4 Experimental Results 117 /5.5 
       Summary 123 -- 6 Cascaded Current-VoltageH∞ Repetitive 
       Control 127 /6.1 Operation Modes in Microgrids 127 /6.2 
       Control Scheme 129 /6.3 Design of the Voltage Controller 
       131 /6.4 Design of the Current Controller 133 /6.5 Design 
       Example 134 /6.6 Experimental Results 136 /6.7 Summary 145
       -- 7 Control of Inverter Output Impedance 149 /7.1 
       Inverters with Inductive Output Impedances (L-inverters) 
       149 /7.2 Inverters with Resistive Output Impedances (R-
       inverters) 150 /7.3 Inverters with Capacitive Output 
       Impedances (C-inverters) 152 /7.4 Design of C-inverters to
       Improve the Voltage THD 153 /7.5 Simulation Results for R-,
       L- and C-inverters 156 /7.6 Experimental Results for R-, L
       - and C-inverters 158 /7.7 Impact of the Filter Capacitor 
       161 /7.8 Summary 162 -- 8 Bypass of Harmonic Current 
       Components 163 /8.1 Controller Design 163 /8.2 Physical 
       Interpretation of the Controller 165 /8.3 Stability 
       Analysis 167 /8.4 Experimental Results 169 /8.5 Summary 
       169. 
505 8  9 Power Quality Issues in Traction Power Systems 171 /9.1 
       Introduction 171 /9.2 Description of the Topology 174 /9.3
       Compensation of Negative-sequence Currents, Reactive Power
       and Harmonic Currents 174 /9.4 Special Case: cose = 1 178 
       /9.5 Simulation Results 180 /9.6 Summary 182 -- Part Two 
       Neutral Line Provision 185 -- 10 Topology of a Neutral Leg
       187 /10.1 Introduction 187 /10.2 Split DC Link 188 /10.3 
       Conventional Neutral Leg 189 /10.4 Independently-
       controlledNeutral Leg 190 /10.5 Summary 190 -- 11 
       Classical Control of a Neutral Leg 193 /11.1 Mathematical 
       Modelling 193 /11.2 Controller Design 195 /11.3 
       Performance Evaluation 198 /11.4 Selection of the 
       Components 200 /11.5 Simulation Results 201 /11.6 Summary 
       204 -- 12 H∞ Voltage-Current Control of a Neutral Leg 205
       /12.1 Mathematical Modelling 205 /12.2 Controller Design 
       207 /12.3 Selection of Weighting Functions 211 /12.4 
       Design Example 212 /12.5 Simulation Results 213 /12.6 
       Summary 214 -- 13 Parallel PI Voltage-H∞ Current Control 
       of a Neutral Leg 215 /13.1 Description of the Neutral Leg 
       215 /13.2 Design of an H∞ Current Controller 217 /13.3 
       Addition of a Voltage Control Loop 221 /13.4 Experimental 
       Results 223 /13.5 Summary 226 -- 14 Applications in Single
       -phase to Three-phase Conversion 229 /14.1 Introduction 
       229 /14.2 The Topology under Consideration 231 /14.3 Basic
       Analysis 233 /14.4 Controller Design 235 /14.5 Simulation 
       Results 240 /14.6 Summary 242 -- Part Three Power Flow 
       Control 245 -- 15 Current Proportional-Integral Control 
       247 /15.1 Control Structure 247 /15.2 Controller 
       Implementation 249 /15.3 Experimental Results 250 /15.4 
       Summary 254 -- 16 Current Proportional-Resonant Control 
       255 /16.1 Proportional-Resonant Controller 255 /16.2 
       Control Structure 256 /16.3 Controller Design 257 /16.4 
       Experimental Results 259 /16.5 Summary 262 -- 17 Current 
       Deadbeat Predictive Control 265 /17.1 Control Structure 
       265 /17.2 Controller Design 265 /17.3 Experimental Results
       267 /17.4 Summary 271 -- 18 Synchronverters: Grid-friendly
       Inverters that Mimic Synchronous Generators 273 /18.1 
       Mathematical Model of Synchronous Generators 274 /18.2 
       Implementation of a Synchronverter 277 /18.3 Operation of 
       a Synchronverter 279 /18.4 Simulation Results 282 /18.5 
       Experimental Results 285 /18.6 Summary 290. 
505 8  19 Parallel Operation of Inverters 293 /19.1 Introduction 
       293 /19.2 Problem Description 295 /19.3 Power Delivered to
       a Voltage Source 295 /19.4 Conventional Droop Control 297 
       /19.5 Inherent Limitations of Conventional Droop Control 
       299 /19.6 Robust Droop Control of R-inverters 304 /19.7 
       Robust Droop Control of C-inverters 311 /19.8 Robust Droop
       Control of L-inverters 318 /19.9 Summary 327 -- 20 Robust 
       Droop Control with Improved Voltage Quality 329 /20.1 
       Control Strategy 329 /20.2 Experimental Results 331 /20.3 
       Summary 340 -- 21 Harmonic Droop Controller to Improve 
       Voltage Quality 341 /21.1 Model of an Inverter System 341 
       /21.2 Power Delivered to a Current Source 343 /21.3 
       Reduction of Harmonics in the Output Voltage 344 /21.4 
       Simulation Results 347 /21.5 Experimental Results 349 /
       21.6 Summary 351 -- Part Four Synchronisation 353 -- 22 
       Conventional Synchronisation Techniques 355 /22.1 
       Introduction 355 /22.2 Zero-crossing Method 356 /22.3 
       Basic Phase-Locked Loops (PLL) 357 /22.4 PLL in the 
       Synchronously Rotating Reference Frame (SRF-PLL) 358 /22.5
       Second-Order Generalised Integrator-based PLL (SOGI-PLL) 
       360 /22.6 Sinusoidal Tracking Algorithm (STA) 361 /22.7 
       Simulation Results with SOGI-PLL and STA 363 /22.8 
       Experimental Results with SOGI-PLL and STA 365 /22.9 
       Summary 369 -- 23 Sinusoid-Locked Loops 373 /23.1 Single-
       phase SynchronousMachine (SSM) Connected to the Grid 373 /
       23.2 Structure of a Sinusoid-Locked Loop (SLL) 374 /23.3 
       Tracking of the Frequency and the Phase 375 /23.4 Tracking
       of the Voltage Amplitude 376 /23.5 Tuning of the 
       Parameters 376 /23.6 Equivalent Structure 377 /23.7 
       Simulation Results 379 /23.8 Experimental Results 382 /
       23.9 Summary 385 -- References -- Bibliography 387. 
520    Integrating renewable energy and other distributed energy 
       sources into smart grids, often via power inverters, is 
       arguably the largest "new frontier" for smart grid 
       advancements. Inverters should be controlled properly so 
       that their integration does not jeopardize the stability 
       and performance of power systems and a solid technical 
       backbone is formed to facilitate other functions and 
       services of smart grids. This unique reference offers 
       systematic treatment of important control problems in 
       power inverters, and different general converter theories.
       Starting at a basic level, it presents conventional power 
       conversion methodologies and then 'non-conventional' 
       methods, with a highly accessible summary of the latest 
       developments in power inverters as well as insight into 
       the grid connection of renewable power. Consisting of four
       parts - Power Quality Control, Neutral Line Provision, 
       Power Flow Control, and Synchronisation - this book fully 
       demonstrates the integration of control and power 
       electronics. Key features include: the fundamentals of 
       power processing and hardware design innovative control 
       strategies to systematically treat the control of power 
       inverters extensive experimental results for most of the 
       control strategies presented the pioneering work on 
       "synchronverters" which has gained IET Highly Commended 
       Innovation Award Engineers working on inverter design and 
       those at power system utilities can learn how advanced 
       control strategies could improve system performance and 
       work in practice. The book is a useful reference for 
       researchers who are interested in the area of control 
       engineering, power electronics, renewable energy and 
       distributed generation, smart grids, flexible AC 
       transmission systems, and power systems for more-electric 
       aircraft and all-electric ships. This is also a handy text
       for graduate students and university professors in the 
       areas of electrical power engineering, advanced control 
       engineering, power electronics, renewable energy and smart
       grid integration. 
588 0  Print version record. 
590    O'Reilly|bO'Reilly Online Learning: Academic/Public 
       Library Edition 
650  0 Electric current converters. 
650  0 Electric inverters. 
650  0 Interconnected electric utility systems. 
650  0 Smart power grids. 
650  0 Renewable energy sources. 
650  2 Renewable Energy 
650  6 Onduleurs (Électricité) 
650  6 Réseaux électriques d'interconnexion. 
650  6 Réseaux électriques intelligents. 
650  6 Énergies renouvelables. 
650  7 Electric current converters|2fast 
650  7 Electric inverters|2fast 
650  7 Interconnected electric utility systems|2fast 
650  7 Renewable energy sources|2fast 
650  7 Smart power grids|2fast 
700 1  Hornik, Tomas. 
776 08 |iPrint version:|aZhong, Qing-Chang.|tControl of power 
       inverters in renewable energy and smart grid integration
       |z9780470667095|w(DLC)  2012029858|w(OCoLC)815042444 
856 40 |uhttps://ezproxy.naperville-lib.org/login?url=https://
       learning.oreilly.com/library/view/~/9781118481790/?ar
       |zAvailable on O'Reilly for Public Libraries 
938    ProQuest Ebook Central|bEBLB|nEBL1118505 
994    92|bJFN