Library Hours
Monday to Friday: 9 a.m. to 9 p.m.
Saturday: 9 a.m. to 5 p.m.
Sunday: 1 p.m. to 9 p.m.
Naper Blvd. 1 p.m. to 5 p.m.
     
Limit search to available items
Results Page:  Previous Next

Title Ferroelectric dielectrics integrated on silicon / edited by Emmanuel Defaÿ. [O'Reilly electronic resource]

Imprint London : ISTE ; Hoboken, NJ : Wiley, 2011.
QR Code
Description 1 online resource (xiv, 448 pages) : illustrations
Note Adapted and updated from: Dielectriques ferroelectriques integres sur silicium, published in France by Hermes Science/Lavoisier, 2011.
Bibliography Includes bibliographical references and index.
Summary This book describes up-to-date technology applied to high-K materials for More Than Moore applications, i.e. microsystems applied to microelectronics core technologies. After detailing the basic thermodynamic theory applied to high-K dielectrics thin films including extrinsic effects, this book emphasizes the specificity of thin films. Deposition and patterning technologies are then presented. A whole chapter is dedicated to the major role played in the field by X-Ray Diffraction characterization, and other characterization techniques are also described such as Radio frequency characterization. An in-depth study of the influence of leakage currents is performed together with reliability discussion. Three applicative chapters cover integrated capacitors, variables capacitors and ferroelectric memories. The final chapter deals with a reasonably new research field, multiferroic thin films.
Contents Cover; Title Page; Copyright Page; Table of Contents; Preface; Chapter 1. The Thermodynamic Approach; 1.1. Background; 1.2. The functions of state; 1.3. Linear equations, piezoelectricity; 1.4. Nonlinear equations, electrostriction; 1.5. Thermodynamic modeling of the ferroelectric-paraelectricphase transition; 1.5.1. Assumption on the elastic Gibbs energy; 1.5.2. Second-order transition; 1.5.3. Effect of stress; 1.5.4. First-order transition; 1.6. Conclusion; 1.7. Bibliography; Chapter 2. Stress Effect on Thin Films; 2.1. Introduction; 2.2. Modeling the system under consideration
2.3. Temperature-misfit strain phase diagrams for monodomain films2.3.1. Phase diagram construction from the Landau-Ginzburg-Devonshire theory; 2.3.2. Calculations limitations; 2.4. Domain stability map; 2.4.1. Presentation and description of the framework of study; 2.4.2. Main contributions to the total energy of a film; 2.4.3. Influence of thickness; 2.4.4. Macroscopic elastic energy for each type of tetragonal domain; 2.4.5. Indirect interaction energy; 2.4.6. Domain structures at equilibrium; 2.4.7. Domain stability map; 2.5. Temperature-misfit strain phase diagram for polydomain films
2.6. Discussion of the nature of the "misfit strain"2.6.1. Mechanical misfit strain; 2.6.2. Thermodynamic misfit strain; 2.6.3. As an illustration; 2.7. Conclusion; 2.8. Experimental validation of phase diagrams: state of the art; 2.9. Case study; 2.10. Results; 2.10.1. Evolution of the lattice parameters; 2.10.2. Associated stresses and strains; 2.11. Comparison between the experimental data and the temperature-misfit strain phase diagrams; 2.11.1. Thin film of PZT; 2.11.2. Thin layer of PbTiO3; 2.12. Conclusion; 2.13. Bibliography; Chapter 3. Deposition and Patterning Technologies
3.1. Deposition method3.1.1. Cathodic sputtering; 3.1.2. Ion beam sputtering; 3.1.3. Pulsed laser deposition; 3.1.4. The sol-gel process; 3.1.5. The MOCVD; 3.1.6. Molecular beam epitaxy; 3.2. Etching; 3.2.1. Wet etching; 3.2.2. Dry etching; 3.3. Contamination; 3.4. Monocrystalline thin-film transfer; 3.4.1. Smart CutTM technology; 3.4.2. Bonding/thinning; 3.4.3. Interest in the material in a thin layer; 3.4.4. State of the art of the domain/applications; 3.4.5. An exemplary implementation; 3.5. Design of experiments; 3.5.1. The assumptions; 3.5.2. Reproducibility
3.5.3. How can we reduce the number of experiments?3.5.4. A DOE example: PZT RF magnetron sputtering deposition; 3.6. Conclusion; 3.7. Bibliography; Chapter 4. Analysis Through X-ray Diffraction of Polycrystalline Thin Films; 4.1. Introduction; 4.2. Some reminders of X-ray diffraction and crystallography; 4.2.1. Nature of X-rays; 4.2.2. X-ray scattering and diffraction; 4.3. Application to powder or polycrystalline thin-films; 4.4. Phase analysis by X-ray diffraction; 4.4.1. Grazing incidence diffraction; 4.4.2. De-texturing; 4.4.3. Quantitative analysis
Subject Ferroelectric thin films.
Silicon -- Electric properties.
Electric batteries -- Corrosion.
Couches minces ferroélectriques.
Piles électriques -- Corrosion.
Electric batteries -- Corrosion
Ferroelectric thin films
Silicon -- Electric properties
Added Author Defaÿ, Emmanuel.
Other Form: Print version: Ferroelectric dielectrics integrated on silicon. London : ISTE ; Hoboken, NJ : Wiley, 2011 9781848213135 (DLC) 2011035048 (OCoLC)753633934
ISBN 9781118602768 (electronic bk.)
1118602765 (electronic bk.)
9781118602751 (electronic bk.)
1118602757 (electronic bk.)
9781118602805
1118602803
Patron reviews: add a review
Click for more information
EBOOK
No one has rated this material

You can...
Also...
- Find similar reads
- Add a review
- Sign-up for Newsletter
- Suggest a purchase
- Can't find what you want?
More Information