Library Hours
Monday to Friday: 9 a.m. to 9 p.m.
Saturday: 9 a.m. to 5 p.m.
Sunday: 1 p.m. to 9 p.m.
Naper Blvd. 1 p.m. to 5 p.m.
     
Limit search to available items
Results Page:  Previous Next
Author Dodson, Bryan, 1962-

Title Probabilistic design for optimization and robustness for engineers / Bryan Dodson, Patrick C. Hammett, Rene Klerx. [O'Reilly electronic resource]

Publication Info. Chichester, West Sussex, United Kingdom : John Wiley & Sons, [2014]
QR Code
Description 1 online resource
Bibliography Includes bibliographical references and index.
Contents Probabilistic Design for Optimization and Robustness for Engineers; Contents; Preface; Acknowledgments; 1 New product development process; 1.1 Introduction; 1.2 Phases of new product development; 1.2.1 Phase I-concept planning; 1.2.2 Phase II-product planning; 1.2.3 Phase III-product engineering design and verification; 1.2.4 Phase IV-process engineering; 1.2.5 Phase V-manufacturing validation and ramp-up; 1.3 Patterns of new product development; 1.4 New product development and Design for Six Sigma; 1.4.1 DfSS core objectives; 1.4.2 DfSS methodology; 1.4.3 Embedded DfSS; 1.5 Summary.
Exercises2 Statistical background for engineering design; 2.1 Expectation; 2.2 Statistical distributions; 2.2.1 Normal distribution; 2.2.2 Lognormal distribution; 2.2.3 Weibull distribution; 2.2.4 Exponential distribution; 2.3 Probability plotting; 2.3.1 Probability plotting-lognormal distribution; 2.3.2 Probability plotting-normal distribution; 2.3.3 Probability plotting-Weibull distribution; 2.3.4 Probability plotting-exponential distribution; 2.3.5 Probability plotting with confidence limits; 2.4 Summary; Exercises; 3 Introduction to variation in engineering design.
3.1 Variation in engineering design3.2 Propagation of error; 3.3 Protecting designs against variation; 3.4 Estimates of means and variances of functions of several variables; 3.5 Statistical bias; 3.6 Robustness; 3.7 Summary; Exercises; 4 Monte Carlo simulation; 4.1 Determining variation of the inputs; 4.2 Random number generators; 4.3 Validation; 4.4 Stratified sampling; 4.5 Summary; Exercises; 5 Modeling variation of complex systems; 5.1 Approximating the mean, bias, and variance; 5.2 Estimating the parameters of non-normal distributions.
5.3 Limitations of first-order Taylor series approximation for variance5.4 Effect of non-normal input distributions; 5.5 Nonconstant input standard deviation; 5.6 Summary; Exercises; 6 Desirability; 6.1 Introduction; 6.2 Requirements and scorecards; 6.2.1 Types of requirements; 6.2.2 Design scorecard; 6.3 Desirability-single requirement; 6.3.1 Desirability-one-sided limit; 6.3.2 Desirability-two-sided limit; 6.3.3 Desirability-nonlinear function; 6.4 Desirability-multiple requirements; 6.4.1 Maxi-min total desirability index; 6.5 Desirability-accounting for variation.
6.5.1 Determining desirability-using expected yields6.5.2 Determining desirability-using non-mean responses; 6.6 Summary; Exercises; 7 Optimization and sensitivity; 7.1 Optimization procedure; 7.2 Statistical outliers; 7.3 Process capability; 7.4 Sensitivity and cost reduction; 7.4.1 Reservoir flow example; 7.4.2 Reservoir flow initial solution; 7.4.3 Reservoir flow initial solution verification; 7.4.4 Reservoir flow optimized with normal horsepower distribution; 7.4.5 Reservoir flow optimized with normal horsepower distribution verification.
Summary Probabilistic Design for Optimization and Robustness: Presents the theory of modeling with variation using physical models and methods for practical applications on designs more insensitive to variation. Provides a comprehensive guide to optimization and robustness for probabilistic design. Features examples, case studies and exercises throughout. The methods presented can be applied to a wide range of disciplines such as mechanics, electrics, chemistry, aerospace, industry and engineering. This text is supported by an accompanying website featu.
Subject Industrial design -- Statistical methods.
Reliability (Engineering)
Robust statistics.
Design -- Méthodes statistiques.
Fiabilité.
Statistiques robustes.
Reliability (Engineering)
Robust statistics
Mechanical Engineering.
Engineering & Applied Sciences.
Industrial & Management Engineering.
Added Author Hammett, Patrick C.
Klerx, Rene.
Other Form: Print version: Dodson, Bryan, 1962- Probabilistic design for optimization and robustness for engineers. Chichester, West Sussex, United Kingdom : John Wiley & Sons, [2014] 9781118796191 (DLC) 2014013950
ISBN 9781118796306 (ePub)
1118796306 (ePub)
9781118796504 (Adobe PDF)
1118796500 (Adobe PDF)
1118796195
9781118796191
9781306979696 (MyiLibrary)
1306979692 (MyiLibrary)
(cloth)
Patron reviews: add a review
Click for more information
EBOOK
No one has rated this material

You can...
Also...
- Find similar reads
- Add a review
- Sign-up for Newsletter
- Suggest a purchase
- Can't find what you want?
More Information