Library Hours
Monday to Friday: 9 a.m. to 9 p.m.
Saturday: 9 a.m. to 5 p.m.
Sunday: 1 p.m. to 9 p.m.
Naper Blvd. 1 p.m. to 5 p.m.
     
Limit search to available items
Results Page:  Previous Next
Author Khajepour, Amir.

Title Electric and hybrid vehicles : technologies, modeling, and control : a mechatronic approach / Amir Khajepour, M. Saber Fallah, Avesta Goodarzi. [O'Reilly electronic resource]

Publication Info. Chichester, West Sussex, United Kingdom : Wiley, 2014.
QR Code
Description 1 online resource
Summary "An advanced level introductory book covering fundamental aspects, design and dynamics of electric and hybrid electric vehiclesThere is significant demand for an understanding of the fundamentals, technologies, and design of electric and hybrid electric vehicles and their components from researchers, engineers, and graduate students. Although there is a good body of work in the literature, there is still a great need for electric and hybrid vehicle teaching materials. Electric and Hybrid Vehicles: Technologies, Modeling and Control - A Mechatronic Approach is based on the authors' current research in vehicle systems and will include chapters on vehicle propulsion systems, the fundamentals of vehicle dynamics, EV and HEV technologies, chassis systems, steering control systems, and state, parameter and force estimations. The book is highly illustrated, and examples will be given throughout the book based on real applications and challenges in the automotive industry. Designed to help a new generation of engineers needing to master the principles of and further advances in hybrid vehicle technology Includes examples of real applications and challenges in the automotive industry with problems and solutions Takes a mechatronics approach to the study of electric and hybrid electric vehicles, appealing to mechanical and electrical engineering interests Responds to the increase in demand of universities offering courses in newer electric vehicle technologies "-- Provided by publisher
"Designed to help a new generation of engineers needing to master the principles of and further advances in hybrid vehicle technology"-- Provided by publisher
Bibliography Includes bibliographical references and index.
Contents Machine generated contents note: 1. Introduction to Vehicle Propulsion and Powertrain Technologies -- 1.1. History of Vehicle Development -- 1.2. Internal Combustion Engine Vehicles (ICEVs) -- 1.2.1. The Four-Stroke Gasoline Engine -- 1.2.2. The Four-Stroke Diesel Engine -- 1.2.3. ICE Performance Characteristics -- 1.2.4. ICE Vehicle Emissions -- 1.3. Vehicle Emission Control Technologies -- 1.3.1. Advanced Engine Design -- 1.3.2. Catalytic Converters -- 1.3.3. The Diesel Particulate Filter (DPF) -- 1.3.4. Exhaust Gas Recirculation (EGR) -- 1.3.5. Crankcase Emission Control System -- 1.4. Vehicles with Alternative Fuels -- 1.4.1. Natural Gas Vehicles (NGVs) -- 1.4.2. Liquefied Petroleum Gas Vehicles (LPGVs) -- 1.4.3. Biodiesel -- 1.4.4. Hydrogen -- 1.5. Powertrain Technologies -- 1.5.1. Rear-Wheel Drive Powertrains -- 1.5.2. Front-Wheel Drive (FWD) Powertrains -- 1.5.3. Multi-Wheel Drive Powertrains -- 1.6. Transmission Systems -- 1.6.1. Manual Transmission/Transaxle Systems -- 1.6.2. Automatic Transmission/Transaxle Systems -- 1.6.3. Automated Manual Transmissions (AMTs) -- 1.6.4. Continuous Variable Transmissions (CVTs) -- 1.7. Drivetrain and Differentials -- 1.7.1. Open Differentials -- 1.7.2. Limited Slip Differentials -- 1.7.3. Locking Differentials -- 1.7.4. Transfer Case Differentials -- Problems -- References -- 2. Electric and Hybrid Powertrain Technologies -- 2.1. Introduction -- 2.2. Battery Electric Vehicles (BEVs) -- 2.2.1. The BEV Powertrain Configuration -- 2.2.2. Electric Traction Motors -- 2.2.3. Energy Sources and Storages -- 2.2.4. Power Electronic Converters -- 2.2.5. Power Bus -- 2.2.6. Regenerative Braking System -- 2.3. Fuel-Cell Electric Vehicles (FCEVs) -- 2.3.1. Fuel-Cell Technologies -- 2.4. Hybrid Electric Vehicles -- 2.4.1. Degree of Hybridization -- 2.4.2. Parallel Hybrid Configuration -- 2.4.3. Series Hybrid Configuration -- 2.4.4. Power-Split Configuration -- 2.4.5. Compound Hybrid Configuration -- 2.5. Plug-in Hybrid Electric Vehicles (PHEVs) -- 2.6. Hybrid Hydraulic Vehicles (HHVs) -- 2.7. Pneumatic Hybrid Vehicles (PHVs) -- 2.8. Power/Energy Management Systems -- 2.9. Summary -- Problems -- References -- 3. Body and Chassis Technologies and Design -- 3.1. Introduction -- 3.2. General Configuration of Automobiles -- 3.3. Body and Chassis Fundamentals -- 3.3.1. General Packaging -- 3.3.2. Design Criteria -- 3.3.3. Design Loads -- 3.4. Different Types of Structural Systems -- 3.4.1. Body-on-Frame Construction -- 3.4.2. Backbone Construction -- 3.4.3. Space Frame Construction -- 3.4.4. Unibody Construction -- 3.5. Body and Chassis Materials -- 3.5.1. Low Carbon Steel -- 3.5.2. Advanced High Strength Steels -- 3.5.3. Nonferrous Metals -- 3.5.4. Nonmetallic Materials -- 3.5.5. Multi-Material Approach in Car Body Design -- 3.6. Specific Considerations in Body and Chassis Design of Electric and Hybrid Electric Vehicles -- 3.6.1. Packaging -- 3.6.2. Material Selection -- 3.6.3. Aerodynamics -- 3.7. The Chassis Systems of Electric and Hybrid Electric Vehicles -- 3.7.1. The Suspension System -- 3.7.2. The Steering System -- 3.7.3. The Braking System -- Problems -- References -- 4. Vehicle Dynamics Fundamentals -- 4.1. Introduction -- 4.2. Concepts and Terminology -- 4.2.1. Evaluation Criteria for Vehicle Dynamics -- 4.2.2. Weights and Dimensions -- 4.3. Vehicle Kinematics -- 4.3.1. Vehicle Coordinate Systems -- 4.3.2. Vehicle Motions -- 4.3.3. Longitudinal and Lateral Slips -- 4.3.4. Planar Vehicle Kinematics -- 4.3.5. Three-Dimensional Vehicle Kinematics -- 4.3.6. Vehicle Forces and Moments -- 4.4. Tire Mechanics and Modeling -- 4.4.1. Tire Characteristic Curves -- 4.4.2. Tire Models -- 4.4.3. The Magic Formula (FM) Tire Model -- Problem -- References -- 5. Modelling and Characteristics of EV/HEV Powertrains Components -- 5.1. Introduction -- 5.2. ICE Performance Characteristics -- 5.2.1. Power and Torque Generation -- 5.2.2. Mean Effective Pressure -- 5.2.3. Specific Fuel Consumption -- 5.2.4. Fuel Conversion Efficiency -- 5.2.5. Mechanical Efficiency -- 5.2.6. Air -- Fuel Ratio -- 5.2.7. Volumetric Efficiency -- 5.2.8. Compression Ratio -- 5.2.9. Specific Emissions -- 5.2.10. Relationships between ICE Performance Characteristics -- 5.3. Electric Motor Performance Characteristics -- 5.3.1. Power and Torque Generation -- 5.3.2. Efficiency -- 5.3.3. DC Motors -- 5.3.4. Induction AC Motors -- 5.3.5. Steady-State Performance Analysis -- 5.3.6. Permanent-Magnet AC Motors -- 5.4. Battery Performance Characteristics -- 5.4.1. Battery Capacity -- 5.4.2. Open Circuit and Terminal Voltages -- 5.4.3. Charge/Discharge Rate -- 5.4.4. State of Charge/Discharge -- 5.4.5. Depth of Discharge -- 5.4.6. Battery Energy Density and Specific Energy -- 5.4.7. Battery Power Density and Specific Power -- 5.4.8. Battery Efficiency -- 5.5. Transmission and Drivetrain Characteristics -- 5.5.1. Gearboxes -- 5.5.2. Planetary Gear Set -- 5.5.3. V-Belt CVTs -- 5.5.4. Driveline Losses -- 5.6. Regenerative Braking Characteristics -- 5.7. Driving Cycles -- 5.7.1. EPA Driving Cycles -- 5.7.2. The European NEDC -- 5.7.3. The Japan 10 -- 15 Mode -- Problems -- References -- 6. Modeling and Analysis of Electric and Hybrid Electric Vehicles' Propulsion and Braking -- 6.1. Introduction -- 6.2. The Longitudinal Dynamics Equation of Motion -- 6.3. Vehicle Propulsion Modeling and Analysis -- 6.3.1. Internal Combustion Engine Vehicles -- 6.3.2. Electric Vehicles -- 6.3.3. Hybrid Electric Vehicles -- 6.4. Vehicle Braking Modeling and Analysis -- Problems -- 7. Handling Analysis of Electric and Hybrid Electric Vehicles -- 7.1. Introduction -- 7.2. Simplified Handling Models -- 7.2.1. Single Track Linear Handling Model -- 7.2.2. Analytical Handling Analysis -- 7.2.3. Roll and Pitch Dynamics Models -- 7.3. Comprehensive Handling Model of EVs and HEVs -- 7.3.1. Vehicle Kinetics Model -- 7.3.2. The Tire Model -- 7.3.3. Powertrain and Wheel Dynamics Model -- 7.3.4. Simulation Study -- Problems -- References -- 8. Energy/Power Allocation and Management -- 8.1. Introduction -- 8.2. Power/Energy Management Controllers -- 8.3. Rule-Based Control Strategies -- 8.3.1. Deterministic Rule-Based Control Strategies -- 8.3.2. Fuzzy-Rule-Based Control Strategies -- 8.3.3. Rule-Based Control Strategies for PHEVs -- 8.4. Optimization-Based Control Strategies -- 8.4.1. Optimization Problem Formulation -- 8.4.2. Global Energy/Power Management Optimization -- 8.4.3. Real-Time Energy/Power Management Optimization -- 8.4.4. Optimization Techniques -- References -- 9. Control of Electric and Hybrid Electric Vehicle Dynamics -- 9.1. Introduction -- 9.2. Fundamentals of Vehicle Dynamic Control (VDC) Systems -- 9.2.1. Driver, Vehicle, and Environment -- 9.2.2. Working Principle of VDC systems -- 9.2.3. VDC Systems Classification -- 9.3. VDC Implementation on Electric and Hybrid Vehicles -- 9.3.1. Structure of the Control System -- 9.3.2. Control System Design -- 9.3.3. Simulation Study -- Problems -- References.
Subject Electric vehicles.
Hybrid electric vehicles.
Véhicules électriques.
Véhicules hybrides.
electric vehicles.
Electric vehicles
Hybrid electric vehicles
Added Author Fallah, M. Saber.
Goodarzi, Avesta.
Other Form: Print version: Khajepour, Amir. Electric and hybrid vehicles. Chichester, West Sussex, United Kingdom : John Wiley & Sons, Inc., 2014 9781118341513 (DLC) 2013049700
ISBN 9781118403105 (ePub)
111840310X (ePub)
9781118403112 (Adobe PDF)
1118403118 (Adobe PDF)
1118341511 (hardback)
9781118341513 (hardback)
9781306472746 (MyiLibrary)
1306472741 (MyiLibrary)
(hardback)
Patron reviews: add a review
Click for more information
EBOOK
No one has rated this material

You can...
Also...
- Find similar reads
- Add a review
- Sign-up for Newsletter
- Suggest a purchase
- Can't find what you want?
More Information