Library Hours
Monday to Friday: 9 a.m. to 9 p.m.
Saturday: 9 a.m. to 5 p.m.
Sunday: 1 p.m. to 9 p.m.
Naper Blvd. 1 p.m. to 5 p.m.
     
Limit search to available items
Results Page:  Previous Next
Author Da Rosa, Aldo Vieira.

Title Fundamentals of renewable energy processes / Aldo Vieira Da Rosa. [O'Reilly electronic resource]

Edition 3rd ed.
Imprint Oxford : Academic, 2012.
QR Code
Description 1 online resource
text file
Series Engineering professional collection
Summary With energy sustainability and security at the forefront of public discourse worldwide, there is a pressing need to foster an understanding of clean, safe alternative energy sources such as solar and wind power. Aldo da Rosa's highly respected and comprehensive resource fulfills this need; it has provided thousands of engineers, scientists, students and professionals alike with a thorough grounding in the scientific principles underlying the complex world of renewable energy technologies. This new third edition of the classic text highlights advances in this vital area, which are proceeding at an unprecedented pace, allowing everyone interested in this burgeoning field to keep up with the latest developments in diverse topics from solar cooling to renewable energy storage. Illuminates the basic principles behind all key renewable power sources- solar, wind, biomass, hydropower & fuel cellsConnects scientific theory with practical implementation through physical examples; end-of-chapter questions help readers apply their knowledge. Written by one of the world's foremost experts in renewable energy, drawing from his decades of experience in academia and industry.
Bibliography Includes bibliographical references and index.
Contents Front Cover -- Fundamentals of Renewable Energy Processes -- Copyright Page -- Table of Content -- Foreword to the Third Edition -- Foreword to the Second Edition -- Foreword to the First Edition -- Acknowledgements -- Generalites -- 1.1 Units and Constants -- 1.2 Energy and Utility -- 1.3 Conservation of Energy -- 1.4 Planetary Energy Balance -- 1.5 The Energy Utilization Rate -- 1.6 The Population Explosion -- 1.7 The Market Penetration Function -- 1.8 Planetary Energy Resources -- 1.8.1 Mineral Assets -- 1.9 Energy Utilization -- 1.10 The Efficiency Question -- 1.11 The Ecology Question -- 1.11.1 Biological -- 1.11.2 Mineral -- 1.11.3 Subterranean -- 1.11.4 Oceanic -- 1.12 Financing -- 1.13 The Cost of Electricity -- References -- Part I -- Heat Engines -- A Minimum of Thermodynamics and of the Kinetic Theory of Gases -- 2.1 The Motion of Molecules -- 2.1.1 Temperature -- 2.1.2 The Perfect-Gas Law -- 2.1.3 Internal Energy -- 2.1.4 Specific Heat at Constant Volume -- 2.1.5 The First Law of Thermodynamics -- 2.1.6 The Pressure-Volume Work -- 2.1.7 Specific Heat at Constant Pressure -- 2.1.8 Degrees of Freedom -- 2.2 Manipulating Confined Gases (Closed Systems) -- 2.2.1 Adiabatic Processes -- 2.2.1.1 Abrupt Compression -- 2.2.1.2 Gradual Compression -- 2.2.1.3 p-V Diagrams -- 2.2.1.4 Polytropic Law -- 2.2.1.5 Work Done Under Adiabatic Expansion (Close System) -- 2.2.2 Isothermal Processes -- 2.2.2.1 Functions of State -- 2.3 Manipulating Flowing Gases (Open Systems) -- 2.3.1 Enthalpy -- 2.3.2 Turbines -- 2.3.2.1 Isentropic Processes -- 2.4 Entropy and Lossy Systems -- 2.4.1 Changes in Entropy -- 2.4.2 Reversibility -- 2.4.3 Causes of Irreversibility -- 2.4.3.1 Friction -- 2.4.3.2 Heat Transfer Across Temperature Differences (Heat Transfer by Conduction) -- 2.4.3.3 Unrestrained Compression, Expansion of a Gas -- 2.4.4 Negentropy.
2.5 Distribution Functions -- 2.5.1 How to Plot Statistics -- 2.5.2 Maxwellian Distribution -- 2.5.3 Fermi-Dirac Distribution -- 2.6 Boltzmann's Law -- 2.7 Phases of a Pure Substance -- 2.8 Symbology -- References -- Mechanical Heat Engines -- 3.1 Heats of Combustion -- 3.2 Carnot Efficiency -- 3.3 Engine Types -- 3.4 The Otto Engine -- 3.4.1 The Efficiency of an Otto Engine -- 3.4.2 Using the T-s Diagram -- 3.4.3 Improving the Efficiency of the Otto Engine -- 3.5 Gasoline -- 3.5.1 Heat of Combustion -- 3.5.2 Antiknock Characteristics -- 3.6 Knocking -- 3.7 Rankine Cycle -- 3.7.1 The Boiling of Water -- 3.7.2 The Steam Engine -- 3.7.3 And now? -- 3.8 The Brayton Cycle -- 3.9 Combined Cycles -- 3.10 Hybrid Engines for Automobiles -- 3.11 The Stirling Engine -- 3.11.1 The Kinematic Stirling Engine -- 3.11.1.1 The Alpha Stirling Engine -- 3.11.1.2 The Beta Stirling Engine -- 3.11.1.3 The Implementation of the Kinematic Stirling -- 3.11.2 The Free-piston Stirling Engine -- References -- Ocean Thermal Energy Converters -- 4.1 Introduction -- 4.2 OTEC Configurations -- 4.3 OTEC Efficiency -- 4.4 OTEC Design -- 4.5 Heat Exchangers -- 4.6 Siting -- References -- Thermoelectricity -- 5.1 Experimental Observations -- 5.2 Thermoelectric Thermometers -- 5.3 The Thermoelectric Generator -- 5.4 Figure of Merit of a Material -- 5.5 The Wiedemann-Franz-Lorenz Law -- 5.6 Thermal Conductivity in Solids -- 5.7 Seebeck Coefficient of Semiconductors -- 5.8 Performance of Thermoelectric Materials -- 5.9 Some Applications of Thermoelectric Generators -- 5.10 Design of a Thermoelectric Generator -- 5.11 Thermoelectric Refrigerators and Heat Pumps -- 5.11.1 Design Using an Existing Thermocouple -- 5.11.2 Design Based on Given Semiconductors -- 5.12 Temperature Dependence -- 5.13 Battery Architecture -- 5.14 The Physics of Thermoelectricity -- 5.14.1 The Seebeck Effect.
5.14.2 The Peltier Effect -- 5.14.3 The Thomson Effect -- 5.14.4 Kelvin's Relations -- 5.15 Directions and Signs -- 5.16 Appendix -- References -- Thermionics -- 6.1 Introduction -- 6.2 Thermionic Emission -- 6.3 Electron Transport -- 6.3.1 The Child-Langmuir Law -- 6.4 Lossless Diodes with Space Charge Neutralization -- 6.4.1 Interelectrode Potentials -- 6.4.2 V-J Characteristics -- 6.4.3 The Open-Circuit Voltage -- 6.4.4 Maximum Power Output -- 6.5 Losses in Vacuum Diodes with No Space Charge -- 6.5.1 Efficiency -- 6.5.2 Radiation Losses -- 6.5.2.1 Radiation of Heat -- 6.5.2.2 Efficiency with Radiation Losses Only -- 6.5.3 Excess Electron Energy -- 6.5.4 Heat Conduction -- 6.5.5 Lead Resistance -- 6.6 Real Vacuum-Diodes -- 6.7 Vapor Diodes -- 6.7.1 Cesium Adsorption -- 6.7.2 Contact Ionization -- 6.7.3 Thermionic Ion Emission -- 6.7.4 Space Charge Neutralization Conditions -- 6.7.5 More V-J Characteristics -- 6.8 High-Pressure Diodes -- References -- AMTECMuch of this chapter is based on the article by Cole (1983) -- 7.1 Operating Principle -- 7.2 Vapor Pressure -- 7.3 Pressure Drop in the Sodium Vapor Column -- 7.4 Mean Free Path of Sodium Ions -- 7.5 Characteristics of an AMTEC -- 7.6 Efficiency -- 7.7 Thermodynamics of an AMTEC -- References -- Radio-Noise Generators -- 8.1 Sole Section -- References -- Part II -- The World of Hydrogen -- Fuel Cells -- 9.1 Introduction -- 9.2 Voltaic Cells -- 9.3 Fuel Cell Classification -- 9.3.1 Temperature of Operation -- 9.3.2 State of the Electrolyte -- 9.3.3 Type of Fuel -- 9.3.4 Chemical Nature of the Electrolyte -- 9.4 Fuel Cell Reactions -- 9.4.1 Alkaline Electrolytes -- 9.4.2 Acid Electrolytes -- 9.4.3 Molten Carbonate Electrolytes -- 9.4.4 Ceramic Electrolytes -- 9.4.5 Methanol Fuel Cells -- 9.4.6 Formic Acid Fuel Cells -- 9.5 Typical Fuel Cell Configurations -- 9.5.1 Demonstration Fuel Cell (KOH).
9.5.2 Phosphoric Acid Fuel Cells (PAFC) -- 9.5.2.1 A Fuel Cell Battery (Engelhard) -- 9.5.2.2 First-Generation Fuel Cell Power Plant -- 9.5.3 Molten Carbonate Fuel Cells (MCFC) -- 9.5.3.1 Second-Generation Fuel Cell Power Plant -- 9.5.4 Ceramic Fuel Cells (SOFC) -- 9.5.4.1 Third-Generation Fuel Cell Power Plant -- 9.5.4.2 High Temperature Ceramic Fuel Cells -- 9.5.4.3 Low Temperature Ceramic Fuel Cells -- 9.5.5 Solid-Polymer Electrolyte Fuel Cells -- 9.5.5.1 Cell Construction -- 9.5.6 Direct Methanol Fuel Cells -- 9.5.7 Direct Formic Acid Fuel Cells (DFAFC) -- 9.5.8 Solid Acid Fuel Cells (SAFC) -- 9.5.9 Metallic Fuel Cells-Zinc-Air Fuel Cells -- 9.6 Fuel Cell Applications -- 9.6.1 Stationary Power Plants -- 9.6.2 Automotive Power Plants -- 9.6.3 Other Applications -- 9.7 The Thermodynamics of Fuel Cells -- 9.7.1 Heat of Combustion -- 9.7.2 Free Energy -- 9.7.3 Efficiency of Reversible Fuel Cells -- 9.7.4 Effects of Pressure and Temperature on the Enthalpy[-12pt] and Free Energy Changes of a Reaction -- 9.7.4.1 Enthalpy Dependence on Temperature -- 9.7.4.2 Enthalpy Dependence on Pressure -- 9.7.4.3 Free Energy Dependence on Temperature -- 9.7.4.4 Free Energy Dependence on Pressure -- 9.7.4.5 The Nernst Equation -- 9.7.4.6 Voltage Dependence on Temperature -- 9.8 Performance of Real Fuel Cells -- 9.8.1 Current Delivered by a Fuel Cell -- 9.8.2 Efficiency of Practical Fuel Cells -- 9.8.3 V-I Characteristics of Fuel Cells -- 9.8.3.1 Empirically Derived Characteristics -- 9.8.3.2 Scaling Fuel Cells -- 9.8.3.3 More Complete Empirical Characteristics of Fuel Cells -- 9.8.4 Open-circuit Voltage -- 9.8.5 Reaction Kinetics -- 9.8.5.1 Reaction Rates -- 9.8.5.2 Activation Energy -- 9.8.5.3 Catalysis -- 9.8.6 The Butler-Volmer Equation -- 9.8.6.1 Exchange Currents -- 9.8.7 Transport Losses -- 9.8.8 Heat Dissipation by Fuel Cells.
9.8.8.1 Heat Removal from Fuel Cells -- References -- Hydrogen Production -- 10.1 Generalities -- 10.2 Chemical Production of Hydrogen -- 10.2.1 Historical -- 10.2.2 Metal-Water Hydrogen Production -- 10.2.3 Large-scale Hydrogen Production -- 10.2.3.1 Partial Oxidation -- 10.2.3.2 Steam Reforming -- 10.2.3.3 Thermal Decomposition -- 10.2.3.4 Syngas -- 10.2.3.5 Shift Reaction -- 10.2.3.6 Methanation -- 10.2.3.7 Methanol -- 10.2.3.8 Syn-crude -- 10.2.4 Hydrogen Purification -- 10.2.4.1 Desulfurization -- 10.2.4.2 CO2 Removal -- 10.2.4.3 CO Removal and Hydrogen Extraction -- 10.2.4.4 Hydrogen Production Plants -- 10.2.5 Compact Fuel Processors -- 10.2.5.1 Formic Acid -- 10.3 Electrolytic Hydrogen -- 10.3.1 Introduction -- 10.3.2 Electrolyzer Configurations -- 10.3.2.1 Liquid Electrolyte Electrolyzers -- 10.3.2.2 Solid-Polymer Electrolyte Electrolyzers -- 10.3.2.3 Ceramic Electrolyte Electrolyzers -- 10.3.2.4 High Efficiency Steam Electrolyzers -- 10.3.3 Efficiency of Electrolyzers -- 10.3.4 Concentration-Differential Electrolyzers -- 10.3.5 Electrolytic Hydrogen Compression -- 10.4 Thermolytic Hydrogen -- 10.4.1 Direct Dissociation of Water -- 10.4.2 Chemical Dissociation of Water -- 10.4.2.1 Mercury-hydrobromic acid cycle -- 10.4.2.2 Barium chromate cycle -- 10.4.2.3 Sulfur-iodine cycle -- 10.5 Photolytic Hydrogen -- 10.5.1 Generalities -- 10.5.2 Solar Photolysis -- 10.6 Photobiologic Hydrogen Production -- References -- Hydrogen Storage -- 11.1 Introduction -- 11.1.1 DOE Targets for Automotive Hydrogen Storage -- 11.2 Compressed Gas -- 11.3 Cryogenic Hydrogen -- 11.4 Storage of Hydrogen by Adsorption -- 11.5 Storage of Hydrogen in Chemical Compounds -- 11.5.1 Generalities -- 11.5.2 Hydrogen Carriers -- 11.5.3 Water Plus a Reducing Substance -- 11.5.4 Formic Acid -- 11.5.5 Metal Hydrides -- 11.5.5.1 Characteristics of Hydride Materials.
Subject Renewable energy sources.
Power (Mechanics)
Renewable Energy
Énergies renouvelables.
Énergie mécanique.
Power (Mechanics)
Renewable energy sources
Other Form: Print version: Da Rosa, Aldo Vieira. Fundamentals of renewable energy processes. Amsterdam ; Boston : Elsevier/Academic Press 9780123972194 0123972191 (OCoLC)816662631
ISBN 0123978254 (electronic bk.)
9780123978257 (electronic bk.)
Standard No. C20110069132
9780123972194
Patron reviews: add a review
Click for more information
EBOOK
No one has rated this material

You can...
Also...
- Find similar reads
- Add a review
- Sign-up for Newsletter
- Suggest a purchase
- Can't find what you want?
More Information