Library Hours
Monday to Friday: 9 a.m. to 9 p.m.
Saturday: 9 a.m. to 5 p.m.
Sunday: 1 p.m. to 9 p.m.
Naper Blvd. 1 p.m. to 5 p.m.
Limit search to available items
Results Page:  Previous Next
Author Singh, Anubhav, author.

Title Mobile Deep Learning with TensorFlow Lite, ML Kit and Flutter [O'Reilly electronic resource] / Singh, Anubhav.

Edition 1st edition
Publication Info. Packt Publishing, 2020.
QR Code
Description 1 online resource (380 pages)
text file
Summary Learn how to deploy effective deep learning solutions on cross-platform applications built using TensorFlow Lite, ML Kit, and Flutter Key Features Work through projects covering mobile vision, style transfer, speech processing, and multimedia processing Cover interesting deep learning solutions for mobile Build your confidence in training models, performance tuning, memory optimization, and neural network deployment through every project Book Description Deep learning is rapidly becoming the most popular topic in the mobile app industry. This book introduces trending deep learning concepts and their use cases with an industrial and application-focused approach. You will cover a range of projects covering tasks such as mobile vision, facial recognition, smart artificial intelligence assistant, augmented reality, and more. With the help of eight projects, you will learn how to integrate deep learning processes into mobile platforms, iOS, and Android. This will help you to transform deep learning features into robust mobile apps efficiently. You'll get hands-on experience of selecting the right deep learning architectures and optimizing mobile deep learning models while following an application oriented-approach to deep learning on native mobile apps. We will later cover various pre-trained and custom-built deep learning model-based APIs such as machine learning (ML) Kit through Firebase. Further on, the book will take you through examples of creating custom deep learning models with TensorFlow Lite. Each project will demonstrate how to integrate deep learning libraries into your mobile apps, right from preparing the model through to deployment. By the end of this book, you'll have mastered the skills to build and deploy deep learning mobile applications on both iOS and Android. What you will learn Create your own customized chatbot by extending the functionality of Google Assistant Improve learning accuracy with the help of features available on mobile devices Perform visual recognition tasks using image processing Use augmented reality to generate captions for a camera feed Authenticate users and create a mechanism to identify rare and suspicious user interactions Develop a chess engine based on deep reinforcement learning Explore the concepts and methods involved in rolling out production-ready deep learning iOS and Android applications Who this book is for This book is for data scientists, deep learning and computer vision engineers, and natu...
Reproduction Electronic reproduction. Boston, MA : Safari, Available via World Wide Web. 2020.
System Details Mode of access: World Wide Web.
Genre Electronic books.
Added Author Bhadani, Rimjhim, author.
Safari, an O'Reilly Media Company.
Standard No. 9781789611212
Patron reviews: add a review
Click for more information
No one has rated this material

You can...
- Find similar reads
- Add a review
- Sign-up for Newsletter
- Suggest a purchase
- Can't find what you want?
More Information