Library Hours
Monday to Friday: 9 a.m. to 9 p.m.
Saturday: 9 a.m. to 5 p.m.
Sunday: 1 p.m. to 9 p.m.
Naper Blvd. 1 p.m. to 5 p.m.

LEADER 00000cam a2201057 a 4500 
001    880409482 
003    OCoLC 
005    20240129213017.0 
006    m     o  d         
007    cr |n||||||||| 
008    140523s2014    enk     ob    001 0 eng d 
019    883128034|a959328293|a959589726|a962315081|a962814639
       |a971222469 
020    1306798078|q(electronic bk.) 
020    9781306798075|q(electronic bk.) 
020    9781455731855 
020    1455731854 
020    1455731161 
020    9781455731169 
029 1  AU@|b000057231608 
029 1  CHBIS|b010295337 
029 1  CHNEW|b001012214 
029 1  CHVBK|b327764015 
029 1  DEBBG|bBV042031099 
029 1  DEBBG|bBV042309788 
029 1  DEBSZ|b414186885 
029 1  DEBSZ|b414275667 
035    (OCoLC)880409482|z(OCoLC)883128034|z(OCoLC)959328293
       |z(OCoLC)959589726|z(OCoLC)962315081|z(OCoLC)962814639
       |z(OCoLC)971222469 
037    611058|bMIL 
040    IDEBK|beng|epn|cIDEBK|dOPELS|dUMI|dDEBBG|dCOO|dDEBSZ|dRRP
       |dOCLCQ|dYDX|dOCLCQ|dOCLCA|dOCLCF|dU3W|dD6H|dCEF|dOTZ|dUAB
       |dAU@|dUKAHL|dOCLCO|dOCLCQ|dOCLCO 
049    INap 
082 04 628.1 
082 04 628.1|222 
099    eBook O'Reilly for Public Libraries 
245 00 Nanotechnology applications for clean water :|bsolutions 
       for improving water quality /|cedited by Anita Street [and
       others] ; foreword by George Gray.|h[O'Reilly electronic 
       resource] 
250    2nd ed. 
260    Oxford :|bWilliam Andrew,|c©2014. 
300    1 online resource 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
490 1  Micro & nano technologies series 
500    Includes index. 
504    Includes bibliographical references and index. 
505 0  Ch. 1 Sensors Based on Carbon Nanotube Arrays and Graphene
       for Water Monitoring -- 1.1. Introduction -- 1.2. CNT-
       based electrochemical sensors -- 1.2.1. Various methods 
       for preparation of CNT-based sensors -- 1.2.2. Fabrication
       of aligned CNT NEA -- 1.2.3. Applications of CNT-based 
       sensors for metal ion monitoring -- 1.3. Graphene-based 
       sensors -- 1.3.1. Graphene-based electrochemical sensors -
       - 1.3.2. Graphene sensors for pesticides -- 1.3.3. 
       Graphene sensors for other pollutants -- 1.4. Conclusions 
       and future work -- Acknowledgments -- References -- ch. 2 
       Advanced Nanosensors for Environmental Monitoring -- 2.1. 
       Introduction -- 2.2. Nanostructured sensing materials 
       developed -- 2.2.1. Incorporation of metal nanoparticles 
       in photopolymerized organic conducting polymers -- 2.2.2. 
       Nanostructured PAA membranes as novel electrode materials 
       -- 2.3. Chemical sensor arrays and pattern recognition. 
505 8  2.3.1. Data processing, pattern recognition, and support 
       vector machines -- 2.3.2. Integration of sensor array with
       chromatographic systems -- 2.4. Biosensing applications of
       nanostructured materials -- 2.4.1. Biosensors for 
       polychlorinated biphenyls -- 2.4.2. Endocrine disrupting 
       chemicals, chlorinated organics, and other analytes -- 
       2.4.3. Multiarray electrochemical sensors for monitoring 
       pathogenic bacteria, cell viability, and antibiotic 
       susceptibility -- 2.5. Conclusions and future perspectives
       -- Acknowledgments -- References -- ch. 3 Electrochemical 
       Biosensors Based on Nanomaterials for Detection of 
       Pesticides and Explosives -- 3.1. Introduction -- 3.2. 
       Nanomaterials-based biosensors for pesticides -- 3.2.1. 
       Biosensor based on AChE -- 3.2.2. Biosensor based on ChO/
       AChE bienzyme -- 3.2.3. Biosensor based on LBL assembly of
       AChE on CNT -- 3.2.4. Biosensor based on OPH -- 3.3. NP-
       based electrochemical immunoassay of TNT. 
505 8  3.3.1. The principle of NP-based TNT sensor -- 3.3.2. The 
       analytical performance of TNT sensor -- 3.4. Conclusions -
       - Acknowledgments -- References -- ch. 4 Dye Nanoparticle-
       Coated Test Strips for Detection of ppb-Level Ions in 
       Water -- 4.1. Introduction -- 4.2. Fundamental concept of 
       dye nanoparticle-coated test strip -- 4.2.1. Structural 
       features of dye nanoparticle-coated test strip -- 4.2.2. 
       Simple yet versatile fabrication methods of DNTSs -- 
       4.2.3. Detection characteristics with DNTS -- 4.3. The 
       strategy to produce a suitable DNTS for a target ion -- 
       4.4. Detection of harmful ions in water with DNTSs -- 
       4.4.1. PAN nanofiber DNTS for Zn(II) detection -- 4.4.2. 
       Dithizone nanofiber DNTS for Hg(II) detection -- 4.5. 
       Conclusions and future perspectives -- Acknowledgments -- 
       References -- ch. 5 Functional Nucleic Acid-Directed 
       Assembly of Nanomaterials and Their Applications as 
       Colorimetric and fluorescent Sensors for Trace 
       Contaminants in Water. 
505 8  5.1. Detection of trace contaminants in water -- 5.2. 
       Functional nucleic acids for molecular recognition -- 
       5.2.1. In vitro selection of functional nucleic acids that
       are selective for a broad range of target analytes -- 
       5.2.2. Analytes or contaminants recognized selectively by 
       functional nucleic acids -- 5.3. Functional nucleic acid-
       directed assembly of nanomaterials for sensing 
       contaminants -- 5.3.1. Fluorescent sensors -- 5.3.2. 
       Colorimetric sensors -- 5.4. Simultaneous multiplexed 
       detection using quantum dots and gold nanoparticles -- 
       5.5. Sensors on solid supports -- 5.5.1. Dipsticks -- 
       5.5.2. Incorporation of sensors into devices -- 5.6. Other
       sensing schemes utilizing electrochemistry and magnetic 
       resonance imaging -- 5.7. Conclusions and future 
       perspective -- Acknowledgments -- References -- ch. 6 
       Nanostructured Membranes for Water Purification -- 6.1. 
       Introduction -- 6.2. Conducting PAA membranes -- 6.2.1. 
       PAA membranes for nanofiltration of ENPs. 
505 8  6.2.2. Application of PAA membranes for absolute 
       disinfection of drinking water -- 6.3. Conclusions -- 
       Acknowledgments -- References -- ch. 7 Advances in 
       Nanostructured Membranes for Water Desalination -- 7.1. 
       Introduction -- 7.2. Desalination technologies -- 7.2.1. 
       State of the art in RO -- 7.2.2. State of the art in MD --
       7.3. Nanostructured membranes -- 7.3.1. Nanozeolite 
       membranes -- 7.3.2. Clay nanocomposite membranes -- 7.3.3.
       CNT membranes -- 7.4. Application of nanostructured 
       membranes -- 7.4.1. CNT membranes in RO -- 7.4.2. CNT 
       membranes in MD -- 7.5.Commercial efforts to date -- 7.6. 
       Future challenge of energy-efficient CNT membranes for 
       desalination -- Acknowledgments -- References -- ch. 8 
       Nanostructured Titanium Oxide Film- and Membrane-Based 
       Photocatalysis for Water Treatment -- 8.1. TiO2 
       photocatalysis and challenges -- 8.2. Sol-gel synthesis of
       porous Ti02: surfactant self-assembling -- 8.3. 
       Immobilization of TiO2 in the form of films and membranes.
505 8  8.4. Activation of TiO2 under visible light irradiation --
       8.5. Selective decomposition of target contaminants -- 
       8.6. Versatile environmental applications -- 8.7. 
       Suggestions and implications -- Acknowledgments -- 
       References -- ch. 9 Nanotechnology-Based Membranes for 
       Water Purification -- 9.1. Introduction -- 9.2. Zeolite-
       coated ceramic membranes -- 9.3. Inorganic-organic TFN 
       membranes -- 9.4. Hybrid protein-polymer biomimetic 
       membranes -- 9.5. Aligned CNT membranes -- 9.6. Self-
       assembled block copolymer membranes -- 9.7. Graphene-based
       membranes -- 9.8. Conclusions -- References -- ch. 10 
       Multifunctional Nanomaterial-Enabled Membranes for Water 
       Treatment -- 10.1. Introduction -- 10.2. Nanostructured 
       membranes with functional nanoparticles -- 10.2.1. 
       Overview of recent progress in the development of 
       multifunctional membranes -- 10.2.2. Porous polymer 
       nanocomposite membranes: structural aspects. 
505 8  10.2.3. Example: effect of filler incorporation route on 
       the structure and biocidal properties of polysulfone-
       silver nanocomposite membranes of different porosities -- 
       10.2.4. Example: Self-cleaning membrane for ozonation-
       ultrafiltration hybrid process -- 10.3. Potential future 
       research directions -- Acknowledgments -- References -- 
       ch. 11 Nanofluidic Carbon Nanotube Membranes: Applications
       for Water Purification and Desalination -- 11.1. 
       Introduction: carbon nanotube membrane technology for 
       water purification -- 11.2. Basic structure and properties
       of carbon nanotubes -- 11.3. Water transport in carbon 
       nanotube pores: an MD simulation view -- 11.3.1. Water 
       inside carbon nanotubes -- 11.3.2. Carbon nanotubes as 
       biological channel analogs -- 11.4. Fabrication of carbon 
       nanotube membranes -- 11.4.1. Polymeric/CNT membranes -- 
       11.4.2. Silicon nitride CNT membranes -- 11.4.3. CNT 
       polymer network fabrication. 
505 8  11.5. Experimental observations of water transport in 
       double-wall and multi-wall carbon nanotube membranes -- 
       11.6. Nanofiltration properties of carbon nanotube 
       membranes -- 11.6.1. Size exclusion experiments in the 1-
       10 nm size range -- 11.6.2. Ion exclusion in carbon 
       nanotube membranes -- 11.7. Altering transport selectivity
       by membrane functionalization -- 11.8. Is energy-efficient
       desalination and water purification with carbon nanotube 
       membranes possible and practical? -- Acknowledgments -- 
       References -- ch. 12 Design of Advanced Membranes and 
       Substrates for Water Purification and Desalination -- 
       12.1. Overview -- 12.2. Novel method to make a continuous 
       micro-mesopore membrane with tailored surface chemistry 
       for use in nanofiltration -- 12.3. Deposition of 
       polyelectrolyte complex films under pressure and from 
       organic solvents -- 12.4. Solvent resistant hydrolyzed 
       polyacrylonitrile membranes -- 12.5. Polyimides membranes 
       for nanofiltration -- 12.6. Conclusions. 
505 8  15.3. Dendrimers as recyclable ligands for anions -- 15.4.
       Dendrimer-enhanced filtration: overview and applications -
       - 15.5. Summary and outlook -- Acknowledgments -- 
       References -- ch. 16 Detection and Extraction of 
       Pesticides from Drinking Water Using Nanotechnologies -- 
       16.1. Introduction -- 16.2. The need for nanomaterials and
       nanotechnology -- 16.3. Earlier efforts for pesticide 
       removal -- 16.3.1. Surface adsorption -- 16.3.2. 
       Biological degradation -- 16.3.3. Membrane filtration -- 
       16.4. Nanomaterials-based chemistry: recent approaches -- 
       16.4.1. Homogeneous versus heterogeneous chemistry -- 
       16.4.2. Variety of nanosystems -- 16.5. Pesticide removal 
       from drinking water: a case study -- 16.5.1. Noble metal 
       nanoparticle-based mineralization of pesticides -- 16.5.2.
       Detection of ultralow pesticide contamination in water -- 
       16.5.3. Technology to product: a snapshot view -- 16.6. 
       Future directions -- References -- Further reading. 
505 8  Ch. 17 Nanomaterials-Enhanced Electrically Switched Ion 
       Exchange Process for Water Treatment -- 17.1. Introduction
       -- 17.2. Principle of the electrically switched ion 
       exchange technology -- 17.3. Nanomaterials-enhanced 
       electrically switched ion exchange for removal of 
       radioactive cesium-137 -- 17.4. Nanomaterials-enhanced 
       electrically switched ion exchange for removal of chromate
       and perchlorate -- 17.5. Conclusions -- Acknowledgments --
       References -- ch. 18 Nanometallic Particles for 
       Oligodynamic Microbial Disinfection -- 18.1. Introduction 
       -- 18.2. Economic impact of modern disinfection systems --
       18.3. Health impact of water disinfection shortfalls -- 
       18.4. Modern disinfection systems -- 18.5. Nanometallic 
       particles in alternative disinfection systems -- 18.5.1. 
       Silver nanoparticles -- 18.5.2. Synthesis -- 18.5.3. 
       Utility -- 18.6. Conclusions -- References -- ch. 19 
       Nanostructured Visible-Light Photocatalysts for Water 
       Purification. 
505 8  19.1. Visible-light photocatalysis with titanium oxides --
       19.2. Sol-gel fabrication of nitrogen-doped titanium oxide
       nanoparticle photocatalysts -- 19.3. Metal-ion-modified 
       nitrogen-doped titanium oxide photocatalysts -- 19.4. 
       Nanostructured nitrogen-doped titanium-oxide-based 
       photocatalysts -- 19.5. Environmental properties of 
       nitrogen-doped titanium-oxide- based photocatalysts -- 
       19.6. Conclusions and future directions -- References -- 
       ch. 20 Nanotechnology-Enabled Water Disinfection and 
       Microbial Control: Merits and Limitations -- 20.1. 
       Introduction -- 20.2. Current and potential applications -
       - 20.2.1. Nanosilver -- 20.2.2. Titanium oxide -- 20.2.3. 
       Fullerenes -- 20.2.4.Combining current technologies with 
       nanotechnology -- 20.3. Outlook on the role of 
       nanotechnology in microbial control: limitations and 
       research needs -- References -- ch. 21 Possible 
       Applications of Fullerene Nanomaterials in Water Treatment
       and Reuse -- 21.1. Introduction. 
505 8  21.2. Chemistry of fullerene nanomaterials -- 21.3. 
       Applications of fullerene nanomaterials -- 21.3.1. 
       Membrane fabrication using fullerene nanomaterials -- 
       21.3.2. Oxidation of organic compounds -- 21.3.3. 
       Bacterial and viral inactivation -- 21.4. Summary -- 
       Acknowledgements -- References -- ch. 22 Heterogeneous 
       Catalytic Reduction for Water Purification: Nanoscale 
       Effects on Catalytic Activity, Selectivity, and 
       Sustainability -- 22.1. Introduction -- 22.2. Catalytic 
       hydrodehalogenation: iodinated X-ray contrast media -- 
       22.3. Selective catalytic nitrate reduction -- 22.4. 
       Conclusions and prospects -- References -- ch. 23 Enhanced
       Dechlorination of Trichloroethylene by Membrane-Supported 
       Iron and Bimetallic Nanoparticles -- 23.1. Introduction --
       23.2. Nanoparticle formation -- 23.2.1. Solution and 
       emulsion techniques -- 23.2.2. In situ formation of 
       nanoparticles -- 23.2.3. Addition of secondary metals -- 
       23.2.4. Preserving zero-valence -- 23.3. Polymers. 
505 8  23.4.Composite material -- 23.5. Water treatment -- 
       23.5.1. Metal particle composition -- 23.5.2. Absorption 
       in support polymer -- 23.6. Conclusions -- References -- 
       ch. 24 Synthesis of Nanostructured Bimetallic Particles in
       Polyligand-Functionalized Membranes for Remediation 
       Applications -- 24.1. Introduction -- 24.2. Nanoparticle 
       synthesis in functionalized membranes -- 24.2.1. 
       Polyvinylidene flouride membrane functionalization with 
       polyacrylic acid -- 24.2.2. Synthesis of fe-based 
       bimetallic nanoparticles in polyacrylic acid layers -- 
       24.3. Characterization of polyacrylic acid functionalized 
       membranes -- 24.4. Characterization of nanoparticles in 
       membranes -- 24.4.1. Chelation interaction between ferrous
       ions and polyacrylic acid -- 24.4.2. Fe/Pd nanoparticle 
       characterization -- 24.5. Reactivity of membrane-based 
       nanoparticles -- 24.5.1. Catalytic hydrodechlorination of 
       trichloroethylene -- 24.5.2. Effect of dopant material and
       nanoparticle structure. 
505 8  24.5.3. Catalytic hydrodechlorination of selected 
       polychlorinated biphenyls -- 24.5.4. Dechlorination 
       efficiency of different polychlorinated biphenyls -- 
       24.5.5. Catalytic activity as a function of palladium 
       coating content -- 24.6. Conclusions -- Acknowledgments --
       References -- ch. 25 Magnesium-Based Corrosion Nano-Cells 
       for Reductive Transformation of Contaminants -- 25.1. 
       Introduction -- 25.2. Magnesium-based bimetallic systems -
       - 25.3. Unique corrosion properties of magnesium -- 25.4. 
       Doping nanoscale palladium onto magnesium-modified alcohol
       reduction route -- 25.5. Role of nanosynthesis in 
       assuaging concerns from palladium usage -- 25.6. 
       Challenges in nanoscaling magnesium -- 25.7. Other 
       environmental applications -- Acknowledgments -- 
       References -- ch. 26 Multifunctional Materials Containing 
       Nanoscale Zerovalent Iron in Carbon Microspheres for the 
       Environmentally Benign Remediation of Chlorinated 
       Hydrocarbons -- 26.1. Introduction. 
505 8  26.2. Materials synthesis -- 26.2.1. Adsorption and 
       reactivity studies -- 26.3. Stability and transport 
       characteristics -- 26.4. Partitioning at TCE-water 
       interfaces -- 26.5. Summary -- Acknowledgments -- 
       References -- ch. 27 Water Decontamination Using Iron and 
       Iron Oxide Nanoparticles -- 27.1. Introduction -- 27.2. 
       Synthesis and properties of iron and iron oxide 
       nanoparticles -- 27.2.1. Iron nanoparticles -- 27.2.2. 
       Iron oxide nanoparticles -- 27.3. Removal of pollutants 
       through sorption/dechlorination by iron/iron oxide 
       nanoparticles -- 27.3.1. Removal of arsenic in water -- 
       27.3.2. Removal of chromium in water -- 27.3.3. Removal of
       phosphates in water -- 27.3.4. Removal of chloro-organics 
       in water -- 27.3.5. Removal of E. coli in Water -- 27.4. 
       Conclusions -- References -- ch. 28 Nanotechnology for 
       Contaminated Subsurface Remediation: Possibilities and 
       Challenges -- 28.1. Introduction -- 28.2. Sources of 
       groundwater contamination, and remediation costs. 
505 8  28.3. Remediation alternatives -- 28.4. Contaminated site 
       remediation via reactive nanomaterials -- 28.5. Example of
       contaminated site remediation via reactive nanometals -- 
       28.6. Summary -- References -- ch. 29 Green Remediation of
       Hexavalent Chromium Using Naturally Derived Flavonoids and
       Engineered Nanoparticles -- 29.1. Introduction -- 29.2. 
       Nanotechnologies for site remediation and wastewater 
       treatment -- 29.2.1. Bimetallic nanoparticles remediation 
       approach -- 29.2.2. Remediation of chromium using 
       nanotechnology -- 29.2.3. Determination of Cr(VI) 
       concentration -- 29.2.4. Removal of Cr(VI) from complex 
       aqueous media -- 29.3. Naturally occurring flavonoids as 
       reducing agents for hexavalent chromium -- 29.4. 
       Conclusions -- Acknowledgments -- References -- ch. 30 
       Physicochemistry of Polyelectrolyte Coatings That Increase
       Stability, Mobility, and Contaminant Specificity of 
       Reactive Nanoparticles Used for Groundwater Remediation. 
505 8  30.1. Challenges of using reactive nanomaterials for in 
       situ groundwater remediation -- 30.2. Polymeric surface 
       modification/functionalization -- 30.2.1. Definitions and 
       materials -- 30.2.2. Nanoparticle surface modification 
       approaches -- 30.3. Effect of surface modifiers on the 
       mobility of nanomaterials in the subsurface -- 30.3.1. 
       Colloidal forces and Derjaguin-Landau-Verwey-Overbeek 
       theory -- 30.3.2. Adsorbed layer characterization -- 30.4.
       Contaminant targeting of polymeric functionalized 
       nanoparticles -- 30.5. Effect of surface modification/
       functionalization on contaminant degradation -- 30.6. 
       Remaining challenges and ongoing research and development 
       opportunities -- References -- ch. 31 Stabilization of 
       Zero-Valent Iron Nanoparticles for Enhanced In Situ 
       Destruction of Chlorinated Solvents in Soils and 
       Groundwater -- 31.1. Introduction -- 31.2. Stabilization 
       of zero-valent iron nanoparticles using polysaccharides. 
505 8  31.3. Reactivity of starch- or carboxymethyl-cellulose-
       stabilized zero-valent iron nanoparticles -- References --
       ch. 32 Reducing Leachability and Bioaccessibility of Toxic
       Metals in Soils, Sediments, and Solid/Hazardous Wastes 
       Using Stabilized Nanoparticles -- 32.1. Reductive 
       immobilization of chromate in soil and water using 
       stabilized zero-valent iron nanoparticles -- 32.1.1. 
       Introduction -- 32.1.2. Reduction and removal of Cr(VI) in
       water -- 32.1.3. Reduction and immobilization of Cr(VI) 
       sorbed in soil -- 32.2. In situ immobilization of lead in 
       soils using stabilized vivianite nanoparticles -- 32.3. 
       Mechanisms of nanoparticle stabilization by carboxymethyl 
       cellulose -- 32.4. Conclusions -- References -- ch. 33 
       Introduction to Societal Issues: The Responsible 
       Development of Nanotechnology for Water -- References -- 
       ch. 34 Nanotechnology in Water: Societal, Ethical, and 
       Environmental Considerations -- 34.1. Introduction. 
505 8  34.2. Responsible development: ethical, social, and 
       environmental concerns -- 34.2.1. Access, parity, and 
       effects of technology deployment -- 34.2.2. Human health 
       and environmental effects -- 34.3. Public engagement: what
       role should the public have? -- 34.4. Conclusions -- 
       References -- ch. 35 Competition for Water -- 35.1. 
       Introduction -- 35.2. Population and technological impacts
       on water -- 35.3. Water access -- 35.4. Corruption, 
       mismanagement, and overconsumption -- 35.5. Climate change
       and global warming -- 35.6. Patents: parity and access 
       issues -- 35.7. Political demands -- 35.8. Conflict -- 
       35.9. Biofuels -- 35.9.1. Biofuels introduction -- 35.9.2.
       Worldwide biofuels policy -- 35.9.3. Biofuels: solution to
       or creation of a problem? -- 35.9.4. Possible ways forward
       for biofuels -- 35.10. Bottled water -- 35.11. Future 
       trends -- 35.12. Conclusions -- Notes -- References -- ch.
       36 A Framework for Using Nanotechnology to Improve Water 
       Quality -- 36.1. Introduction. 
505 8  36.2. Superordinate goals -- 36.3. Trading zones -- 
       36.3.1. Interactional expertise -- 36.3.2. Boundary object
       -- 36.4. Moral imagination -- 36.5. Adaptive management --
       36.6. Anticipatory governance -- 36.6.1. Expert 
       elicitation as a method for facilitating anticipatory 
       governance -- 36.6.2. Potters for peace -- 36.7. 
       Conclusions -- Acknowledgments -- References -- ch. 37 
       International Governance Perspectives on Nanotechnology 
       Water Innovation -- 37.1. Introduction -- 37.2. Diagnosing
       the need -- 37.3. The role for policy -- 37.4. Conclusions
       -- References -- ch. 38 Nanoscience and Water: Public 
       Engagement at and below the Surface -- 38.1. Introduction 
       -- 38.2. Water and the public -- 38.3. Nanotechnology 
       treatment strategies -- 38.4. Modalities -- 38.4.1. 
       Municipal systems -- 38.4.2. Point-of-use systems -- 
       38.4.3. Targeted systems -- 38.5. Water and public 
       engagement -- 38.5.1. Municipal systems -- 38.5.2. Point-
       of-use strategies -- 38.6. Conclusions -- Acknowledgments.
505 8  Notes -- References -- ch. 39 How Can Nanotechnologies 
       Fulfill the Needs of Developing Countries? -- 39.1. 
       Nanotechnologies and developing countries -- 39.2. How can
       nanotechnologies deliver public value? -- 39.3. 
       Nanodialogues in Zimbabwe -- 39.4. Balancing risk and 
       opportunity -- 39.5. Future directions -- References -- 
       ch. 40 Challenges to Implementing Nanotechnology Solutions
       to Water Issues in Africa -- 40.1. Introduction -- 
       40.2.Community involvement or ownership -- 40.3.Community 
       need for the technology -- 40.4.Community water quality 
       monitoring -- 40.5. Infrastructure -- 40.6. Capacity 
       development -- 40.7. Improvements in quality of life -- 
       40.8.Commercialization of nanotechnologies -- 40.9. 
       Conclusions -- References -- ch. 41 Life Cycle Inventory 
       of Semiconductor Cadmium Selenide Quantum Dots for 
       Environmental Applications -- 41.1. Introduction -- 41.2. 
       Applications and synthesis of quantum dots -- 41.3. 
       Methodology. 
505 8  41.4. Life cycle inventory of synthesis of CdSe quantum 
       dots -- 41.5. Conclusions and future perspective -- 
       Acknowledgments -- References -- Nanotechnology Solutions 
       for Improving Water Quality. 
520    Nanotechnology is already having a dramatic impact on 
       improving water quality and the second edition of 
       Nanotechnology Applications for Clean Water highlights 
       both the challenges and the opportunities for 
       nanotechnology to positively influence this area of 
       environmental protection. This book presents detailed 
       information on cutting-edge technologies, current research,
       and trends that may impact the success and uptake of the 
       applications. Recent advances show that many of the 
       current problems with water quality can be addressed using
       nanosorbents, nanocatalysts, bioactive nanoparticles, 
       nanostructured catalytic membranes, and nanoparticle 
       enhanced filtration. The book describes these technologies
       in detail and demonstrates how they can provide clean 
       drinking water in both large scale water treatment plants 
       and in point-of-use systems. In addition, the book 
       addresses the societal factors that may affect widespread 
       acceptance of the applications. 
588 0  Print version record. 
590    O'Reilly|bO'Reilly Online Learning: Academic/Public 
       Library Edition 
650  0 Water-supply engineering|xTechnological innovations. 
650  0 Water|xPurification|xTechnological innovations. 
650  0 Water|xPollution|xPrevention. 
650  0 Nanotechnology. 
650  0 Nanostructured materials. 
650  2 Nanostructures 
650  2 Nanotechnology 
650  6 Eau|xApprovisionnement|xTechnique|xInnovations. 
650  6 Eau|xÉpuration|xInnovations. 
650  6 Nanomatériaux. 
650  6 Nanotechnologie. 
650  7 Nanostructured materials|2fast 
650  7 Nanotechnology|2fast 
650  7 Water|xPollution|xPrevention|2fast 
650  7 Water|xPurification|xTechnological innovations|2fast 
700 1  Street, Anita. 
776 08 |iPrint version:|z9781306798075 
830  0 Micro & nano technologies. 
856 40 |uhttps://ezproxy.naperville-lib.org/login?url=https://
       learning.oreilly.com/library/view/~/9781455731169/?ar
       |zAvailable on O'Reilly for Public Libraries 
936    BATCHLOAD 
938    Askews and Holts Library Services|bASKH|nAH25543905 
938    ProQuest MyiLibrary Digital eBook Collection|bIDEB
       |ncis28364613 
938    YBP Library Services|bYANK|n11819532 
994    92|bJFN