Library Hours
Monday to Friday: 9 a.m. to 9 p.m.
Saturday: 9 a.m. to 5 p.m.
Sunday: 1 p.m. to 9 p.m.
Naper Blvd. 1 p.m. to 5 p.m.

LEADER 00000cam a2200841 a 4500 
001    811842101 
003    OCoLC 
005    20240129213017.0 
006    m     o  d         
007    cr cnu---unuuu 
008    121004s2012    enk     ob    001 0 eng d 
016 7  737240237|2DE-101 
019    812253904|a868597604|a880839280|a893192781|a915543264
       |a970607893|a970799570|a971049188|a971089032|a987052802
       |a987718804|a989793327|a989990505|a990319613|a991497166
       |a991836092|a992507421|a992876245|a999658291|a1004915076
       |a1007225007|a1040497283|a1105803289 
020    0123978254|q(electronic bk.) 
020    9780123978257|q(electronic bk.) 
024 8  C20110069132 
024 8  9780123972194 
029 1  AU@|b000050174878 
029 1  AU@|b000065427823 
029 1  AU@|b000067108245 
029 1  CHNEW|b001010722 
029 1  DEBBG|bBV041778401 
029 1  DEBBG|bBV042247245 
029 1  DEBBG|bBV042314465 
029 1  DEBSZ|b393370631 
029 1  DEBSZ|b404328911 
029 1  DEBSZ|b481269959 
029 1  NZ1|b14514256 
029 1  NZ1|b15191347 
029 1  ZWZ|b195043383 
035    (OCoLC)811842101|z(OCoLC)812253904|z(OCoLC)868597604
       |z(OCoLC)880839280|z(OCoLC)893192781|z(OCoLC)915543264
       |z(OCoLC)970607893|z(OCoLC)970799570|z(OCoLC)971049188
       |z(OCoLC)971089032|z(OCoLC)987052802|z(OCoLC)987718804
       |z(OCoLC)989793327|z(OCoLC)989990505|z(OCoLC)990319613
       |z(OCoLC)991497166|z(OCoLC)991836092|z(OCoLC)992507421
       |z(OCoLC)992876245|z(OCoLC)999658291|z(OCoLC)1004915076
       |z(OCoLC)1007225007|z(OCoLC)1040497283|z(OCoLC)1105803289 
037    CL0500000362|bSafari Books Online 
037    E79CE9C5-CA1A-49B6-B6C5-F3C963A277B8|bOverDrive, Inc.
       |nhttp://www.overdrive.com 
040    OPELS|beng|epn|cOPELS|dYDXCP|dOCLCQ|dOCLCF|dUIU|dN$T|dTXA
       |dMYG|dB24X7|dTEFOD|dCUS|dUMI|dCOO|dDEBBG|dDEBSZ|dCAUOI
       |dTEFOD|dOCLCQ|dICA|dLOA|dAGLDB|dOCLCQ|dK6U|dU3W|dD6H|dVTS
       |dINT|dOCLCQ|dWYU|dOCLCQ|dSTF|dLEAUB|dOL$|dCNCEN|dUKAHL
       |dOCLCQ|dOCLCO|dCOM|dOCLCO|dOCLCQ|dOCLCO 
049    INap 
082 04 621.042 
082 04 621.042|223 
099    eBook O’Reilly for Public Libraries 
100 1  Da Rosa, Aldo Vieira. 
245 10 Fundamentals of renewable energy processes /|cAldo Vieira 
       Da Rosa.|h[O'Reilly electronic resource] 
250    3rd ed. 
260    Oxford :|bAcademic,|c2012. 
300    1 online resource 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
347    text file 
490 0  Engineering professional collection 
504    Includes bibliographical references and index. 
505 0  Front Cover -- Fundamentals of Renewable Energy Processes 
       -- Copyright Page -- Table of Content -- Foreword to the 
       Third Edition -- Foreword to the Second Edition -- 
       Foreword to the First Edition -- Acknowledgements -- 
       Generalites -- 1.1 Units and Constants -- 1.2 Energy and 
       Utility -- 1.3 Conservation of Energy -- 1.4 Planetary 
       Energy Balance -- 1.5 The Energy Utilization Rate -- 1.6 
       The Population Explosion -- 1.7 The Market Penetration 
       Function -- 1.8 Planetary Energy Resources -- 1.8.1 
       Mineral Assets -- 1.9 Energy Utilization -- 1.10 The 
       Efficiency Question -- 1.11 The Ecology Question -- 1.11.1
       Biological -- 1.11.2 Mineral -- 1.11.3 Subterranean -- 
       1.11.4 Oceanic -- 1.12 Financing -- 1.13 The Cost of 
       Electricity -- References -- Part I -- Heat Engines -- A 
       Minimum of Thermodynamics and of the Kinetic Theory of 
       Gases -- 2.1 The Motion of Molecules -- 2.1.1 Temperature 
       -- 2.1.2 The Perfect-Gas Law -- 2.1.3 Internal Energy -- 
       2.1.4 Specific Heat at Constant Volume -- 2.1.5 The First 
       Law of Thermodynamics -- 2.1.6 The Pressure-Volume Work --
       2.1.7 Specific Heat at Constant Pressure -- 2.1.8 Degrees 
       of Freedom -- 2.2 Manipulating Confined Gases (Closed 
       Systems) -- 2.2.1 Adiabatic Processes -- 2.2.1.1 Abrupt 
       Compression -- 2.2.1.2 Gradual Compression -- 2.2.1.3 p-V 
       Diagrams -- 2.2.1.4 Polytropic Law -- 2.2.1.5 Work Done 
       Under Adiabatic Expansion (Close System) -- 2.2.2 
       Isothermal Processes -- 2.2.2.1 Functions of State -- 2.3 
       Manipulating Flowing Gases (Open Systems) -- 2.3.1 
       Enthalpy -- 2.3.2 Turbines -- 2.3.2.1 Isentropic Processes
       -- 2.4 Entropy and Lossy Systems -- 2.4.1 Changes in 
       Entropy -- 2.4.2 Reversibility -- 2.4.3 Causes of 
       Irreversibility -- 2.4.3.1 Friction -- 2.4.3.2 Heat 
       Transfer Across Temperature Differences (Heat Transfer by 
       Conduction) -- 2.4.3.3 Unrestrained Compression, Expansion
       of a Gas -- 2.4.4 Negentropy. 
505 8  2.5 Distribution Functions -- 2.5.1 How to Plot Statistics
       -- 2.5.2 Maxwellian Distribution -- 2.5.3 Fermi-Dirac 
       Distribution -- 2.6 Boltzmann's Law -- 2.7 Phases of a 
       Pure Substance -- 2.8 Symbology -- References -- 
       Mechanical Heat Engines -- 3.1 Heats of Combustion -- 3.2 
       Carnot Efficiency -- 3.3 Engine Types -- 3.4 The Otto 
       Engine -- 3.4.1 The Efficiency of an Otto Engine -- 3.4.2 
       Using the T-s Diagram -- 3.4.3 Improving the Efficiency of
       the Otto Engine -- 3.5 Gasoline -- 3.5.1 Heat of 
       Combustion -- 3.5.2 Antiknock Characteristics -- 3.6 
       Knocking -- 3.7 Rankine Cycle -- 3.7.1 The Boiling of 
       Water -- 3.7.2 The Steam Engine -- 3.7.3 And now? -- 3.8 
       The Brayton Cycle -- 3.9 Combined Cycles -- 3.10 Hybrid 
       Engines for Automobiles -- 3.11 The Stirling Engine -- 
       3.11.1 The Kinematic Stirling Engine -- 3.11.1.1 The Alpha
       Stirling Engine -- 3.11.1.2 The Beta Stirling Engine -- 
       3.11.1.3 The Implementation of the Kinematic Stirling -- 
       3.11.2 The Free-piston Stirling Engine -- References -- 
       Ocean Thermal Energy Converters -- 4.1 Introduction -- 4.2
       OTEC Configurations -- 4.3 OTEC Efficiency -- 4.4 OTEC 
       Design -- 4.5 Heat Exchangers -- 4.6 Siting -- References 
       -- Thermoelectricity -- 5.1 Experimental Observations -- 
       5.2 Thermoelectric Thermometers -- 5.3 The Thermoelectric 
       Generator -- 5.4 Figure of Merit of a Material -- 5.5 The 
       Wiedemann-Franz-Lorenz Law -- 5.6 Thermal Conductivity in 
       Solids -- 5.7 Seebeck Coefficient of Semiconductors -- 5.8
       Performance of Thermoelectric Materials -- 5.9 Some 
       Applications of Thermoelectric Generators -- 5.10 Design 
       of a Thermoelectric Generator -- 5.11 Thermoelectric 
       Refrigerators and Heat Pumps -- 5.11.1 Design Using an 
       Existing Thermocouple -- 5.11.2 Design Based on Given 
       Semiconductors -- 5.12 Temperature Dependence -- 5.13 
       Battery Architecture -- 5.14 The Physics of 
       Thermoelectricity -- 5.14.1 The Seebeck Effect. 
505 8  5.14.2 The Peltier Effect -- 5.14.3 The Thomson Effect -- 
       5.14.4 Kelvin's Relations -- 5.15 Directions and Signs -- 
       5.16 Appendix -- References -- Thermionics -- 6.1 
       Introduction -- 6.2 Thermionic Emission -- 6.3 Electron 
       Transport -- 6.3.1 The Child-Langmuir Law -- 6.4 Lossless 
       Diodes with Space Charge Neutralization -- 6.4.1 
       Interelectrode Potentials -- 6.4.2 V-J Characteristics -- 
       6.4.3 The Open-Circuit Voltage -- 6.4.4 Maximum Power 
       Output -- 6.5 Losses in Vacuum Diodes with No Space Charge
       -- 6.5.1 Efficiency -- 6.5.2 Radiation Losses -- 6.5.2.1 
       Radiation of Heat -- 6.5.2.2 Efficiency with Radiation 
       Losses Only -- 6.5.3 Excess Electron Energy -- 6.5.4 Heat 
       Conduction -- 6.5.5 Lead Resistance -- 6.6 Real Vacuum-
       Diodes -- 6.7 Vapor Diodes -- 6.7.1 Cesium Adsorption -- 
       6.7.2 Contact Ionization -- 6.7.3 Thermionic Ion Emission 
       -- 6.7.4 Space Charge Neutralization Conditions -- 6.7.5 
       More V-J Characteristics -- 6.8 High-Pressure Diodes -- 
       References -- AMTECMuch of this chapter is based on the 
       article by Cole (1983) -- 7.1 Operating Principle -- 7.2 
       Vapor Pressure -- 7.3 Pressure Drop in the Sodium Vapor 
       Column -- 7.4 Mean Free Path of Sodium Ions -- 7.5 
       Characteristics of an AMTEC -- 7.6 Efficiency -- 7.7 
       Thermodynamics of an AMTEC -- References -- Radio-Noise 
       Generators -- 8.1 Sole Section -- References -- Part II --
       The World of Hydrogen -- Fuel Cells -- 9.1 Introduction --
       9.2 Voltaic Cells -- 9.3 Fuel Cell Classification -- 9.3.1
       Temperature of Operation -- 9.3.2 State of the Electrolyte
       -- 9.3.3 Type of Fuel -- 9.3.4 Chemical Nature of the 
       Electrolyte -- 9.4 Fuel Cell Reactions -- 9.4.1 Alkaline 
       Electrolytes -- 9.4.2 Acid Electrolytes -- 9.4.3 Molten 
       Carbonate Electrolytes -- 9.4.4 Ceramic Electrolytes -- 
       9.4.5 Methanol Fuel Cells -- 9.4.6 Formic Acid Fuel Cells 
       -- 9.5 Typical Fuel Cell Configurations -- 9.5.1 
       Demonstration Fuel Cell (KOH). 
505 8  9.5.2 Phosphoric Acid Fuel Cells (PAFC) -- 9.5.2.1 A Fuel 
       Cell Battery (Engelhard) -- 9.5.2.2 First-Generation Fuel 
       Cell Power Plant -- 9.5.3 Molten Carbonate Fuel Cells 
       (MCFC) -- 9.5.3.1 Second-Generation Fuel Cell Power Plant 
       -- 9.5.4 Ceramic Fuel Cells (SOFC) -- 9.5.4.1 Third-
       Generation Fuel Cell Power Plant -- 9.5.4.2 High 
       Temperature Ceramic Fuel Cells -- 9.5.4.3 Low Temperature 
       Ceramic Fuel Cells -- 9.5.5 Solid-Polymer Electrolyte Fuel
       Cells -- 9.5.5.1 Cell Construction -- 9.5.6 Direct 
       Methanol Fuel Cells -- 9.5.7 Direct Formic Acid Fuel Cells
       (DFAFC) -- 9.5.8 Solid Acid Fuel Cells (SAFC) -- 9.5.9 
       Metallic Fuel Cells-Zinc-Air Fuel Cells -- 9.6 Fuel Cell 
       Applications -- 9.6.1 Stationary Power Plants -- 9.6.2 
       Automotive Power Plants -- 9.6.3 Other Applications -- 9.7
       The Thermodynamics of Fuel Cells -- 9.7.1 Heat of 
       Combustion -- 9.7.2 Free Energy -- 9.7.3 Efficiency of 
       Reversible Fuel Cells -- 9.7.4 Effects of Pressure and 
       Temperature on the Enthalpy[-12pt] and Free Energy Changes
       of a Reaction -- 9.7.4.1 Enthalpy Dependence on 
       Temperature -- 9.7.4.2 Enthalpy Dependence on Pressure -- 
       9.7.4.3 Free Energy Dependence on Temperature -- 9.7.4.4 
       Free Energy Dependence on Pressure -- 9.7.4.5 The Nernst 
       Equation -- 9.7.4.6 Voltage Dependence on Temperature -- 
       9.8 Performance of Real Fuel Cells -- 9.8.1 Current 
       Delivered by a Fuel Cell -- 9.8.2 Efficiency of Practical 
       Fuel Cells -- 9.8.3 V-I Characteristics of Fuel Cells -- 
       9.8.3.1 Empirically Derived Characteristics -- 9.8.3.2 
       Scaling Fuel Cells -- 9.8.3.3 More Complete Empirical 
       Characteristics of Fuel Cells -- 9.8.4 Open-circuit 
       Voltage -- 9.8.5 Reaction Kinetics -- 9.8.5.1 Reaction 
       Rates -- 9.8.5.2 Activation Energy -- 9.8.5.3 Catalysis --
       9.8.6 The Butler-Volmer Equation -- 9.8.6.1 Exchange 
       Currents -- 9.8.7 Transport Losses -- 9.8.8 Heat 
       Dissipation by Fuel Cells. 
505 8  9.8.8.1 Heat Removal from Fuel Cells -- References -- 
       Hydrogen Production -- 10.1 Generalities -- 10.2 Chemical 
       Production of Hydrogen -- 10.2.1 Historical -- 10.2.2 
       Metal-Water Hydrogen Production -- 10.2.3 Large-scale 
       Hydrogen Production -- 10.2.3.1 Partial Oxidation -- 
       10.2.3.2 Steam Reforming -- 10.2.3.3 Thermal Decomposition
       -- 10.2.3.4 Syngas -- 10.2.3.5 Shift Reaction -- 10.2.3.6 
       Methanation -- 10.2.3.7 Methanol -- 10.2.3.8 Syn-crude -- 
       10.2.4 Hydrogen Purification -- 10.2.4.1 Desulfurization -
       - 10.2.4.2 CO2 Removal -- 10.2.4.3 CO Removal and Hydrogen
       Extraction -- 10.2.4.4 Hydrogen Production Plants -- 
       10.2.5 Compact Fuel Processors -- 10.2.5.1 Formic Acid -- 
       10.3 Electrolytic Hydrogen -- 10.3.1 Introduction -- 
       10.3.2 Electrolyzer Configurations -- 10.3.2.1 Liquid 
       Electrolyte Electrolyzers -- 10.3.2.2 Solid-Polymer 
       Electrolyte Electrolyzers -- 10.3.2.3 Ceramic Electrolyte 
       Electrolyzers -- 10.3.2.4 High Efficiency Steam 
       Electrolyzers -- 10.3.3 Efficiency of Electrolyzers -- 
       10.3.4 Concentration-Differential Electrolyzers -- 10.3.5 
       Electrolytic Hydrogen Compression -- 10.4 Thermolytic 
       Hydrogen -- 10.4.1 Direct Dissociation of Water -- 10.4.2 
       Chemical Dissociation of Water -- 10.4.2.1 Mercury-
       hydrobromic acid cycle -- 10.4.2.2 Barium chromate cycle -
       - 10.4.2.3 Sulfur-iodine cycle -- 10.5 Photolytic Hydrogen
       -- 10.5.1 Generalities -- 10.5.2 Solar Photolysis -- 10.6 
       Photobiologic Hydrogen Production -- References -- 
       Hydrogen Storage -- 11.1 Introduction -- 11.1.1 DOE 
       Targets for Automotive Hydrogen Storage -- 11.2 Compressed
       Gas -- 11.3 Cryogenic Hydrogen -- 11.4 Storage of Hydrogen
       by Adsorption -- 11.5 Storage of Hydrogen in Chemical 
       Compounds -- 11.5.1 Generalities -- 11.5.2 Hydrogen 
       Carriers -- 11.5.3 Water Plus a Reducing Substance -- 
       11.5.4 Formic Acid -- 11.5.5 Metal Hydrides -- 11.5.5.1 
       Characteristics of Hydride Materials. 
520    With energy sustainability and security at the forefront 
       of public discourse worldwide, there is a pressing need to
       foster an understanding of clean, safe alternative energy 
       sources such as solar and wind power. Aldo da Rosa's 
       highly respected and comprehensive resource fulfills this 
       need; it has provided thousands of engineers, scientists, 
       students and professionals alike with a thorough grounding
       in the scientific principles underlying the complex world 
       of renewable energy technologies. This new third edition 
       of the classic text highlights advances in this vital area,
       which are proceeding at an unprecedented pace, allowing 
       everyone interested in this burgeoning field to keep up 
       with the latest developments in diverse topics from solar 
       cooling to renewable energy storage. Illuminates the basic
       principles behind all key renewable power sources- solar, 
       wind, biomass, hydropower & fuel cellsConnects scientific 
       theory with practical implementation through physical 
       examples; end-of-chapter questions help readers apply 
       their knowledge. Written by one of the world's foremost 
       experts in renewable energy, drawing from his decades of 
       experience in academia and industry. 
542    |fCopyright: Elsevier Science & Technology|g2013 
590    O'Reilly|bO'Reilly Online Learning: Academic/Public 
       Library Edition 
650  0 Renewable energy sources. 
650  0 Power (Mechanics) 
650  2 Renewable Energy 
650  6 Énergies renouvelables. 
650  6 Énergie mécanique. 
650  7 Power (Mechanics)|2fast 
650  7 Renewable energy sources|2fast 
776 08 |iPrint version:|aDa Rosa, Aldo Vieira.|tFundamentals of 
       renewable energy processes.|dAmsterdam ; Boston : Elsevier
       /Academic Press|z9780123972194|z0123972191
       |w(OCoLC)816662631 
856 40 |uhttps://ezproxy.naperville-lib.org/login?url=https://
       learning.oreilly.com/library/view/~/9780123972194/?ar
       |zAvailable on O'Reilly for Public Libraries 
938    Askews and Holts Library Services|bASKH|nAH24924616 
938    Books 24x7|bB247|nbke00050953 
938    EBSCOhost|bEBSC|n483990 
938    YBP Library Services|bYANK|n9700543 
938    YBP Library Services|bYANK|n11122617 
994    92|bJFN